Neutrinos

photo

Fermilab is the neutrino capital of the world.

The lab's suite of experiments to study the subtle, elusive particle called the neutrino will aid humanity's understanding of the origin of matter, the unification of forces and the Big Bang. Neutrinos from Fermilab experiments travel over short distances — several hundred meters — and over long distances — several hundred miles.

Fermilab is hosting to what will be the largest experiment of its kind when complete: LBNF/DUNE. At Fermilab's flagship experiment DUNE, the Deep Underground Neutrino Experiment, the lab will send neutrinos 800 miles through Earth's mantle to a former gold mine in Lead, South Dakota. Scientists will use giant detectors to study the neutrinos' travel patterns over that distance, recording neutrino interactions at either end of the journey. Scientists will search for new subatomic phenomena and potentially transform our understanding of neutrinos and their role in the universe. The Long-Baseline Neutrino Facility will provide the neutrino beamline and the infrastructure that will support the DUNE detectors.

Our universe is permeated with neutrinos — nearly massless, neutral particles that interact so rarely with other matter that trillions of them pass through our bodies each second without leaving a trace. These tiny particles, studied in world-leading Fermilab experiments, could be key to a deeper understanding of our universe.

Neutrinos, first discovered in 1956, have some mysterious characteristics. They have puzzlingly low masses, compared to other elementary particles, and they are able to oscillate, or change from one type of neutrino to another.

The Standard Model, the best description of the fundamental particles and forces that make up our universe, predicted the existence of neutrinos. But it also predicted that the lightweight particles would have no mass at all. It could be that neutrinos are the only fundamental particles that gain their mass from a source other than the recently discovered Higgs field.

Neutrinos could have other strange properties as well. They could turn out to be identical to antineutrinos, their antimatter counterparts. They could be related to massive particles that theorists think might have greatly influenced the formation of our universe.

Studying neutrinos could tell us about other areas of physics. They could give us insight into why particles seem naturally to be organized into three generations. They could help reveal undiscovered principles of nature.

Scientists at Fermilab have been involved in neutrino research since the 1970s. In 1999, the laboratory broke ground on its first long-baseline neutrino experiment, MINOS, which studies the oscillation of muon neutrinos to tau neutrinos. The DONUT experiment at Fermilab made the first ever direct observation of a tau neutrino in 2000.

Learn more about Fermilab experiments below and visit the Fermilab Neutrino Division website.

LBNF/DUNE

thumb

The Deep Underground Neutrino Experiment, DUNE, is an international neutrino experiment that would be the largest of its kind. DUNE aims to make definitive determinations of neutrino properties, the dynamics of the supernovae that produced the heavy elements necessary for life and the possibility of proton decay. DUNE research will be conducted with the international Long-Baseline Neutrino Facility, LBNF, at Fermilab and the Sanford Underground Research Facility in South Dakota.


Short-Baseline Neutrino Program

thumb

The Short-Baseline Neutrino Program at Fermilab will look for a fourth neutrino, one that may not follow the rules of neutrino oscillations and interactions shown by the other known three. When construction is complete, a chain of three particle detectors — ICARUS, MicroBooNE and SBND — will probe a beam of neutrinos created by Fermilab's particle accelerators. MicroBooNE, the middle detector, is currently operational. It is a multiton liquid-argon detector and uses the same technology that will be used for DUNE. ICARUS, the most distant of the three, is currently undergoing refurbishment at the CERN research center in Switzerland. SBND, which will sit closest to the source of the neutrino beam, will be a 260-ton liquid-argon detector. Together these three detectors will be powerful tools to investigate in great detail the evolution of neutrino oscillations over short time and distance.


NOvA

thumb

Fermilab's current flagship neutrino experiment, NOvA sends a beam of neutrinos to a 14,000-ton particle detector a record-breaking 500 miles away in Minnesota. NOvA aims to study the oscillation of muon neutrinos to electron neutrinos, to determine the ordering of neutrino masses and to discover whether neutrinos and antineutrinos oscillate at different rates.


MINOS

thumb

MINOS was a neutrino oscillation experiment with a far detector located in a former mine in Minnesota. Scientists are still studying the data from MINOS to better understand neutrino oscillations, in particular, by measuring the disappearance of muon neutrinos and the appearance of electron neutrinos.


MINERvA

thumb

MINERvA is a neutrino-scattering experiment that uses a variety of target materials to search for low-energy neutrino interactions. It is designed to study neutrino-nucleus interactions with unprecedented detail.