FPCL Linear AlgebraModule
Design Notes

Leo Michel otti
December 31, 1997

Contents
1 Introduction

2 Keydesignideas
21 Envelopeletteridiom e
22 Lazyevaluation e
2.3 ACCESSOIS . . . v ottt e e
24 Doubledispatching e

3 Adding new data models
31 AsSignanindex.. e
32 Declae.declare e e
3.3 Writethenew MLDXXX and/or MLCXXX header files
3.4 Writethemodd'ssourcefile
35 Updatethefactories e

4 Implement new data models
41 Utility functions
42 .makeXXX and.declareXXX
4.3 Constructors e e e
44 Regigteringwiththe DVFT
45 Additional arithmeticoperations L
4.6 Streamingmethods
47 Specid functions

A Member functions of classesM L CDiag and ML DDiag

w

0o P wWW

10
10
10
10
1
1

1
1
16
17
18
22
25
27

29

There is no doubt that Marley was dead. This must be dis-
tinctly understood, or nothing wonderful can come of the story | am
going to relate.

— Charles Dickens
A Christmas Carol

1 Introduction

Like Jacob Marley’s death, thereis acentral fact that must be understood or the rest of this document will
make no sensewhatsoever. On January 13, 1997 was held a*“ Fermilab Physics ClassLibraries Task Force
Contents and Priorities Workshop,” at which comments were solicited from the FPCLTF's (potential) fu-
ture users on desired features for the FPCL packages. A dominant requirement set for the LinearAlgebra
package wasthat it possess a capability for taking advantage of properties belonging to certain categories
of matrices. For example: finding theinverseof a2 x 2, a3 x 3, or adiagonal matrix isatrivial task and
should betreated as such; storage requirements for an anti-symmetric matrix should be less than half that
of ageneric matrix; a matrix multiplication can be done more quickly when one of the operands happens
to be diagonal; and a large body of efficient algorithms have been developed for use with sparse matri-
ces. FPCL’s LinearAlgebra package was principally designed as an attempt to satisfy this requirement
by giving matrices access to specialized “ data models,” each possessing its own efficient computational
methods. You must understand and accept that or this document will appear to describe asuperb example
of converting an essentially clean, simple object into a convoluted monstrosity.

In the next section we will outline the key ideas upon which are built the technique used for realiz-
ing the “datamodels’ concept in software. That isfollowed by two others which describe the process of
adding new “data models’ — that is, new categories of matrices— to the library and implementing them.
LinearAlgebraisnot meant to be aclosed, finished package; it is open-ended, able to incorporate new data
models as they become necessary, or just desirable. Information necessary to extend the library is con-
tained in these Design Notes. In writing it, | assumed that readers already will have had some familiarity
with LinearAlgebra, at least to the point of having scanned its User’s Guide.

2 Keydesignideas

A high degree of polymorphism isthe key approach behind the FPCL LinearAlgebrapackage. The poly-
morphismisattributed not tothe Mat r i x objectsthemselvesbut totheir data. Thefour subsectionsbel ow
describe the most important strategiesthat were used to make polymorphismwork: (&) the envel ope-letter
idiom, (b) lazy evaluation, (c) accessors, and (d) double dispatching.

2.1 Envelope-letter idiom

The“datamodel” concept was realized within the framework of the envel ope-letter idiom. Here, the data
associated with a matrix, i.e., the matrix elements, are not contained within the Mat r i x object instanti-
ated in an application program. Rather, the Mat r i x contains a pointer to another object which actually
possessesthe data. TheMat r i x is considered an “envelope,” which isall that an application program is
allowed to handle, while the data object isthe “letter,” hidden within the “envelope” and invisible to the
program. The only private datum contained within the classes Mat r i xDand Mat r i x Cisthis pointer.

class MatrixD {

private:
M.D* _pm;

i
class MatrixC {

private:
M.C* _pm;

i
M_Dand M_Care abstract (purevirtual) classes (actually structs) which serve as bases from which are de-
rived implementations of specific datamodels. Some relevant dataassociated with M_D are shown bel ow.

struct MD {

i nt r, _c;
i nt _rc;

Fl oat 8* _pdi;
Fl oat 8* _pdf;

i

M_C's data are similar except that Fl oat 8 isreplaced by Conpl ex8. _r and _c refer to the row and
column dimensions of the matrix. _r c is the reference count, about which more later. The matrix ele-
ments are contained in alinear array, with first entry at address _pdi and last at _pdf . Whilethe MLD
and M_C constructors take the responsibility of setting _r, _c, and _r ¢ correctly, constructors for the
derived classesmust set _pdi and _pdf , because the base class does not “know” how information about
matrix elementsis stored in the data models. We will see examples of thisin Section 4.3.

2.2 Lazyevaluation

Thetremendous advantage of the envel ope-letter idiomisthat it enables usto avoid copying dataunneces-
sarily. To begin with, copy constructors need not copy potentially large amounts of datawhenaMat r i x
is passed as an argument to afunction or when it is returned from afunction. Only the data pointer needs
to be reproduced.

MatrixD:: MatrixD(const MatrixD& x)
{

_pm = x._pm;

(_pm ->_rc)++;
}

Notice that thereferencecount, _r ¢, isincreased, becausethereisanew Mat r i x that refersto the same
data. Conversely, theMat r i x destructor decreasesthe reference counter and destroysthe dataif no other
Mat ri x pointsto it.

MatrixD:: " MatrixD()
{

if(--(_pm->rc) == 0) delete _pm;
}

Thisis, by now, a standard technique in C++ programming.
We al so avoid unnecessary duplication by the assignment operator whenever possible, using astrategem
called “lazy evaluation.”

Matri xD& Matri xD: : operator=(const MatrixD& x)

if(_pm !'=x._pm) {
if((_pm->r =x._ pm->r) & (_pm->c == x. _pm->c)) {
/1 1f the same type, just change the pointer.
if(typeid(*_pm) == typeid(*(x._pm))) {
/1 First disconnect fromold data.
if(--(_pm->rc) == 0) delete _pm;
/1l Reset the data pointer and update counter
_pm = x._pnl;
(_pm ->_rc)++;
}
/1 1f not the sane type, then copy the data.
el se {
PREPFORCHANGE(_pm)
_pm ->l oadFron(x._pm);
}
}

// Dinmensions were not correct.
el se MatrixD::error("MatrixD::operator=(const MtrixD&)",
"l nconsi stent dinensions."
)
}

return *this;

}

The initial checks are done to assure that the operation is valid and that a minimum amount of copying
will be done. If the data models are identical, only the pointer is copied, after the original Mat ri x is
disconnected fromitsold data. Ontheother hand, if the datamodel sare different, then the matrix elements
from one must be copied into the other. Thisis done using avirtual function, .loadFrom, which will be
explained more fully in Section 4.1. The macro PREPFORCHANGE is shown bel ow.

#defi ne PREPFORCHANGE(_pml) if((_pm)->rc > 1) { \
--((_pm)->_rc); \
(_pm) = (_pm)->Cone(); \

}

Defined as a macro for convenience, it comes into play whenever the matrix elementsof aMat ri x are
about to be altered. It uses the pure virtual method .Clone, also described in Section 4.1, to reproduce

the data exactly, including the correct data model, but only if necessary — that is, only if more than one
Mat ri x refer to the data.

2.3 Accessors

Usersof aMat ri x class reasonably expect to write statements that access individual matrix elements:
statements like

x(i,j) = 3.1415*x(i,j);

z = x(0,0)*cos(x(2,3) + y(k, 1));

if(y(2,2) >y(1,1)) y(1,1) =y(22);

In LinearAlgebra, values are written to or read from matrix elements not directly but with the help of two
“accessor” classes: MED, for Mat r i xD, and MEC, for Mat r i XxC. They are needed, among other reasons,

because aMat r i x does not know how matrix elements are stored by the data models. However, even if
this were not a consideration, a fragment like

y =X
x(2,2) += 7.5;
would make accessors necessary within the context of lazy evaluation, and one like

Matrix x(5, 5);
X. decl areAnti Symretric();
x(3, 2) =1.0;

would make them necessary, becausex(3, 2) isnot even stored.
The principal characteristicsof aMat r i x accessor are:

(a) itsdataare [1] the address of the Mat r i x which invoked the accessor function, .operator ()(int i, int
j), and [2] thearguments, i andj ;

(b) it isthe object returned by the accessor function;
(c) it possesses a conversion to ascalar, Fl oat 8 for MED and Conpl ex8 for MEC; and

(d) operators that would change a matrix element — such as =, +=, or ++ — are overloaded within ac-
cessor class.

In principle, property (c) enables the accessor to be used in any expression where one would use the
corresponding scalar. In practice, this does not alwayswork. For example, consider the following possi-

bility.
Conpl ex8 w, z; /1l two compl ex variabl es
MatrixC x(7, 4); [// a matrix of conplex nunbers

z

=w+ x(5 2); /1 Line 1: This works under all conpilers.
z =x(5 2) +w /1 Line 2: This may or may not work, depending
/1 on the interface for conplex.

If the complex header file defines the addition operator as a global function,

cl ass conpl ex

{
publi c:

friend conpl ex& operator+(const conpl ex& const conpl ex&);

}

then Line 2 will work aswell asLine 1. On the other hand, if it is a member function of the class,

cl ass conpl ex

{
publi c:

conpl ex& operat or+(const compl ex&);

}

then the compiler will issuean error messagefor Line 2 and refuseto compileit. Eventhoughaconversion
to complex exists, member functionsare not avail ableto the temporary complex variable created. Another
example of the problemsthat arise is shown below.

Fl oat 8 W, /1 a double

Conpl ex8 z; /1 a conpl ex

MatrixD x(7, 4); [/ a matrix of doubles

zZ =W /1 Line 1: This works under all conpilers.

z =x(5 2); /1 Line 2: This will not work under any conpil er.

Here, the accessor returned by “x(5, 2)" possessesaconversiontoaFl oat 8 (i.e.,, doubl e), but
the declaration of the assignment operator requires a complex argument, regardless of whether it is done
as amember function or as aglobal friend. Line 1 works, because compilers recognize that a double can
be converted to a complex; Line 2 does not, because no compiler recognizes that the MED accessor can
be converted to a complex in two steps, by going through the intermediate step of converting to adouble.
Compilers do not search for possible sequences of conversions; either it can be done in one step, or they
throw an error.

Thereis no clean way around these problems. One can try to “overload everything,” but the number
of possibilitiesis discouragingly staggering. Even if one could cover them all, suppose that in the future
another class were introduced that accepted conversion from a double? It isimpossible to anticipate ev-
erything that could occur. In any case, as alast resort, the user can always force a conversion.

Conpl ex8 z;

MatrixD x(7, 4);
z
z

Float8(x(5, 2));
Conpl ex8(Float8(x(5, 2)));

These lines may look ugly, but they do compile.

2.4 Doubledispatching

Because of the variety of data models, a rather involved sequence of events takes place in executing an
arithmetic statement, suchas“z = x + y;”, with matrices. In order to take full advantage of what-
ever efficiencies might exist in the data models, both operands must be treated as polymorphic variables.
Unfortunately, the C++ virtual mechanism is designed to apply only to one of these variables, the one on
the left hand side of the operator. “Double dispatching” isthe name given to a set of techniques for mak-
ing both of them behave “virtually.” | have chosen the construction of “doubly virtual function tables’
(DVFT) from among the possible strategies, with the hope that the process of adding new data models
will scale at worst linearly with the number of already existing models. Our DV FT consists of six doubly
indexed arrays, threefor each genus: MLD: : Sumvit bl and MLC: : Sumvit bl to implement matrix addi-
tion, MLD: : Di ff Vt bl and MLC: : Di ff Vt bl to implement subtraction, and M_D: : Pr odVt bl and
M_C: : ProdVt bl for multiplication. These are static data members of the base classes M_.D and MLC,
fromwhich all data models are derived. Array indicesidentify the particular models on either side of the
operator, and the value associated withaDVFT element isthe name of afunction which will carry out the
correct operation on those models.
To see how this works, we will trace through the actionsinduced by the line

z =x +vy;
The source code for the addition operator is shown below.

Matri xD operator+ (const MatrixD& x, const MatrixD& y)
{
if((x._pm->r ==y. pm->r1) &&
(x._pm->c¢c==y. pm->_c))
{

return MatrixD(MD:: Sumvtbl[x. _pm ->vtbllndex()]
[y._pm->vtbllndex()]
(x._pm, y._pnl)
)
}
el se
{
MatrixD::error("operator+(MatrixD, MatrixD)",
"I nconsi stent di nensions.");
return x; // Wong, but the conpiler requires sonething.
}
}

Before doing anything substantial, the arguments’ dimensions are tested for compatability. That thisis
done now by the Mat r i x class, rather than later by the MLD class, is a design decision to perform all
such tests at the highest level possible. Tests specific to particular modelswill haveto be done at the M_D
level, but this one is common to all types of matrices.

Entry into the DVFT is provided by the virtual function .vtbllndex, which provides an integer index
associated with thedatamodel. Thevaluereturned by thearray isafunctionwhichtakestwoconst M_D*
arguments—to whichwebind thevariablesx. _pm andy. _pm —andreturnsan M_LD* pointer to anew
data object. For example, if both argumentsrefer to Diagonal matrices, we might use afunction like this:

M_D* SunDi agbhi ag(const M.D* argx, const M.D* argy)

{
Fl oat 8 *px, *py, *pz;
M_DDi ag* pNew = new M.DDi ag(argx->r);

px = argx->_pdi;
py = argy->_pdi;
pz = pNew > pdi;

while(pz <= pNew >_pdf) *(pz++) = *(px++) + *(py++);

return pNew,

}

The name of the function is arbitrary but is descriptive of the operation performed and the data models
employed. Since the sum of two diagonal matricesis diagonal, a pointer to an M_DDi ag isreturned. In
general, the type of pointer returned depends on the arguments: adding a Generic matrix to a Diagonal
matrix should result in a Generic matrix; the product of two Symmetric matrices need not be Symmetric,
but their sum or difference would be; because they belong to a (multiplicative) group, the product of two
SU2 matrices would be another SU2 matrix, but their sum would be Generic.® The method for doing
the addition itself can be used whenever two identical data models are added or subtracted. The MLD*
pointer that is returned is used as the argument to a private Mat r i x D constructor, which finishes the task
of providing the final answer.

Note: Work was begun on the Linear Algebra module long before the FPCL exception handling pro-
cedures were developed. Invoking Mat ri xD: : er r or was (and is) meant as a stopgap measure to be
used until they were ready. Now that they are ready, these statements should be replaced.

It is not necessary that every datamodel know about all other datamodels. Their indexing givesthem
an “order,” and it is only necessary that that each model load the table entriesfor itself and all matrices at
alower order that act with it. Thus each higher order data model has only the responsibility of providing
functions which do arithmetic involving itself with matrices of lower order. In this way, as newer data
models are added, source code for the lower order ones need not be changed.

Arithmetic operationsinvolving amatrix and ascalar are handled by the ordinary mechanism of virtual
functions. For example, thesourcecodefor Mat ri xD operator+ (const Matri xD& const
is given below.

inline Matri xD operator+ (const MatrixD& x, const Float8& y)

{
return MatrixD(x. _pm->add(y));

}

START HERE, LEO!!! ThereisnoarithmeticfunctionSum M22_ M33. However, thereisa“hidden”
datamodel, called Bas e, whosearithmetic functionsareloaded by the base classconstructor, M_D: : M_D.
Whenever any matrix isinstatiated, this constructor firstinitializes all rows and columns of the doubly vir-
tual function table with its own functions. Some of these are later replaced, as indicated earlier, but the
ones that are not replaced remain in the table as default actions. For the specific case asked, this function
will catch the fact that the row and column dimensions are not correct and throw an exception. Suppose,

IWe will discuss the tasks of writing these functions and assigning them to the DVFT in Section 4.4.

Fl oat 8&)

however, that onetried to add a 3x3 to a Diagonal matrix of the correct dimensionality and that the author
of the Diagonal data model source code had forgotten (or perversely refused) to write and load the func-
tionsSum M33_Di ag and Sum Di ag_M33. In such acase, the base class function isinvoked and will
produce the correct answer except that, rather than getting an M33 result as expected, the matrix returned
will be Generic. That will be the price of neglecting to do things right.

3 Adding new data models

We now describe in more detail the functions which must be included in implementations for new data
models. For purposes of illustration, we will use source code from the file M_DDi ag. cc, whichimple-
ments a Diagonal data model, and a few fragments from others, such as Symmetric or AntiHermitian. A
few lines also must be added to already existing filesto provide an interfacewith the Matrix classes. After
understanding this section the devel oper should have all the information necessary to add data modelsto
the LinearAlgebra package.

3.1 Assign an index.

To begin with, each datamodel must possessauniqueindex for entry into the DVFT (doubly virtual func-
tiontables). Thisisdoneinthe header fileM odels.h; it would be agood ideato view thisfile now for refer-
ence. For eachMLDXXX (or MLCXXX) datamodel you must defineamacronamed FPCL_ | NDEX_D_ XXX
(or FPCL_I NDEX_C_XXX), as an integer value, the index for the data model. 1t should be in sequence
with preceding datamodels. Thetotal number of datamodel sisassigned to macrosnamed FPCL_M_D_TYPES
and FPCL_M_C_TYPES,; these may be dightly larger than the actual number of data models, but they
must not be smaller. Thus, the first thing that you must do is make certain that these numbers are large
enough to accomodate the creation of your new data model. If not, then simply increase their value, and
proceed to define FPCL_| NDEX_D XXX and/or FPCL_| NDEX_C_XXX.

3.2 Declare.declare

Lines must be added to header file Matrix.h in order to declare the new .declareXXX and .makexX XX
member functions. This is done in two places: as part of the definitions of cl ass Mat ri xD and of
cl ass Mat ri xC. Even though these functions are members of the Matrix classes, they will be imple-
mented in your new source files, not in the MatrixD.cc and MatrixC.cc files.

3.3 Writethenew MLDXXX and/or MLCXXX header files

Your new MLDXXX (MLCXXX) object will be a struct which inheritsfrom MLD (MLC). At the mini-
mum, it must possess (a) constructorsto enable all possible ways of declaring a Matrix, (b) a destructor,
(c) a pointer to the data, and (d) declaration of the pure virtual functions from the base class. That last
requirement can be satisfied by including the header file MLDVirtF.h (MLCVirtF.h) within the body of
struct’ s definition. Notice, by the way, that all the reference counting is handled by the base struct, so we
need not be concerned about it here.

In addition to these minimal requirements, impure virtual functions from the base class can aso be
overloaded if there is reason to do so. For example, in the diagonal models we have overloaded the .de-

10

terminant, .inverse, and .trace functions because these can be carried out more efficiently within the
model.

3.4 Writethemodd’s sourcefile

Finally, we are ready to write the source code implementing the new data model. Most, but not all, of the
minimum requirements have already been declared in the header file. Because this step is more involved
than the others, we will postpone working through the example until the next section.

3.5 Updatethefactories

The new models must be incorporated into the “factory” files, FactoryD.cc and/or FactoryC.cc. These
files implement the functions

i stream& operator>>(istrean& is, MatrixC& x)
i stream& operator>>(istrean& is, MatrixD& x)

providing the proceduresthat read matrices from a stream. They are the only files — the only compilable
units — which need to know about all the data models appropriate to a genus.

Just afew lines need to be added to the factory files. First, the new MLDXXX.h (MLCXXX.h) header
file must be included with the others near the top. Once that is done, lines of the form

else if(strstr(mtype, "MDXXX") !'= ((void*) 0)) {
X._pm = new MLDXXX(...);

isadded to the gauntlet of el se i f clauses.

4 Implement new data models

Let us now complete the piece that we omitted and consider the functions that must be included in the
new implmentation files, MLDXXX.cc and MLCXXX.cc. As mentioned above, we will primarily use
ML DDiag.cc for illustration.
4.1 Utility functions

To begin with, there are afew crucial utility functions, meant to be used by other functions. Their signa-
tures are tabulated below, for both MLDXXX and MLCXXX.

1

i nt M_DXXX: : vt bl | ndex() const | int M_CXXX: : vt bl | ndex()
Fl oat 8 MLDXXX: : val ue(int, int) const | Conpl ex8 M.CXXX::val ue(int,
bool M_DXXX: : set Val ue(int, int, bool M_CXXX: : set Val ueFl t (int,
const Fl oat8&)

bool M_CXXX: : set Val ueCmp(int,
M_D* M_DXXX: : Cl one() const | MLC* M_CXXX: : Cl one()
M_D* M_DXXX: : Enpt yCl one() const | MLC* M_CXXX: : Enpt yCl one()
M_C* M_DXXX: : cl oneConpl ex() const
voi d M_DXXX: : | oadFron{ const M.D*) voi d M_CXXX: : | oadFron{ const M.C*)
voi d M_DXXX: : swi t chRows(int, int) voi d M_CXXX: : swi t chRows(i nt,
voi d M_DXXX: : swi t chCol umms(int, int) voi d M_CXXX: : swi t chCol umms(i nt,

The .vtbllndex function returns the index that is the model’s entry into the DVFT. This isimplemented
best as an inline function,

inline int MDD ag::vtblIndex() const

{
return FPCL_I NDEX D DI AG

}

in the datamodel’s.icc file. Of course, the macro FPCL_| NDEX_D_DI AG(or whatever) was previously
defined in the header file Models.h (see above).

The function .value must return the value of the matrix element associated with indices provided by
its arguments. It doesthis even when the indices correspond to datathat are not actually stored. Consider
the M_DDi ag example below.

Fl oat8 M.DDi ag::value(int i, int j) const
{

if(i ==j) return _nfi];

el se return 0.O0;
}

Incl ass M_DDi ag only the diagonal elements of amatrix are stored, in aprivatearray named _m As
always, checking that the argumentsi andj are within the correct range was aready done at the Matrix
level, so it need not be repeated at the MLD level; only model-specific tests are carried out here. In this
case, if the two arguments are the same, the value of the correct matrix element is returned; if not, azero
isreturned. Other possibilities may be more complicated.

Conpl ex8 M.CAnti Hermtian::value(int i, int j) const
{

/1 Note: _nmi][j] was not allocated for i >=j.

if(i =j) return Complex8(0.0, 0.0);

else if(i <j) return _nfi][j];

el se return - conj(_mjl[i]);
}

The .setValue methods perform the inverse process: storing values within whatever structure holds
the matrix’s data.

12

const Conpl

bool M.DDi ag::setValue(int i, int j, const Float8& x)
{
/1 Normally, the range check shoul d be done
/1 at a higher |evel.
#i f defined(ZM M.D DEBUG) || defined(ZM M.D_TESTS)
ifC (i <0) || (1 >_r)|
(j <0) Il Cj>_c)
) |
M.D: : error("MDDi ag: : set Val ue",
"I ndi ces out of bounds.");
return 1;

}
#endi f

PEC T =g)f
M.D: : error("MDDi ag: : set Val ue",
"Cannot change of f-di agonal element.");
return 1;

}
il =x

return O;

}

Here, because data are going to be stored, we have allowed for an extra level of parancia. By defining
one of two macros, the user can activate an extra level of range checking for debugging programs. Un-
like MLDDi ag: : val ue, which only needs to return a value, the model-specific test throws an error if
the condition “i =j!” issatisfied. Otherwise, the datum provided by the third argument is stored in the
appropriate location.

For the sake of a second illustration, consider what should happen in the anti-Hermitian data model .

bool M.CAntiHermtian::setValueCrmp(int i, int j, const Conplex8& x)
{
if(i ==17j) {
M.C: :error("M.CAnti Herm tian::set Val ueCmp",
"Cannot change di agonal element.");

return 1;
}
elseif(i <j) _nilli]l = x;
el se _mjlli] - conj(x);
return O;

}

Notice that data models the complex genus, such as (the fictitious) M_.CAnt i Her ni t i an, require two
methods, .setValueCmp and .setVValueFIt, depending on whether the third argument refersto adouble or
a complex variable. Unfortunately, the argument list cannot determine their full signature because these
functions are declared to be virtual in the base class.

13

Astheir namessuggest, functions.Clone, .EmptyClone, and .cloneComplex, put copiesof theinvok-
ing objects on the heap. If constructors have been written correctly, these methods can be implemented
easily using mencpy.

M.D* M.DDi ag: : Cl one() const
{
static M.D* q;
g = new M.DDi ag(_r);
menmcpy(g->_pdi, _pdi, _size);
return q;

}
.EmptyCloneislike this except that data are not transferred.

inline MLD* M.DDi ag: : Enpt yCl one() const
{
return new M.DDi ag(_r);

}
%

Finally, genus M_D models possess a third function, .cloneComplex, which returns a pointer to the com-
plex version of itself.

MLC* M.DDi ag: : cl oneConpl ex() const
{

static M.C a;

static Conpl ex8* pf;

static Fl oat8* pi ;

g = new M.CDiag(_r);

for(pi = _pdi, pf = g->_pdi;
pi <= _pdf;
pf ++, pi++)
{
*pf = *pi;
}
return q;

The .loadFrom methods copy data from one M_D to another regardless of the original model. Con-
sider, for example, an implementation of MLDDi ag: : | oadFr om

void M.DDi ag: : | oadFron{ const M.D* x)
{

static int i;
if((_r == x-_>_r) & (_c == x->_c¢)) {

for(i =0; i < _r; i++) {
mi] = x->value(i, i);

14

}

}
// Di nensions were not correct.
el se {

M.D: :error("MDD ag:: | oadFron{ M.D*)",
"Di mensi ons do not match."
)
}
}

(Herel have violated the principle of carrying out the range tests at ahigher level; | don’t remember why.
Perhaps this is a mistake, but if so, it can't hurt.) Notice that the method stores the data regardless of
whether or not the argument x points to a diagonal matrix. Similarly, the method

void M.DSymmetric:: | oadFron{ const M.D* x)
{

static int i;

if((_r ==x->r) & (_c == x->c¢)) {

for(i =0; i < _r; i++) {
for(j =1; j < _c; j++) {
_mi][j] = (x->value(i, j) + x->value(j, i)) [/ 2.0;
}
}
}
el se {

M.D: :error("M.DSymetric::|oadFrom M.D*)",
"Di mensi ons do not match."
)i
}
}

would convert the datain x into that of a Symmetric matrix.

Lastly, the .switchRowsand .switchColumns member functions perform the operationsindicated by
their names. Apart from the .setValue methods, they are the only ones in this set that alter data attached
to the abject. The functions manipulate the data, regardless of how it is encrypted into the model, so that
the result is what one would get by switching the rows or columns of amatrix. If the datamodel isitself
invalidated by this operation — as, indeed, most will be— an error should be thrown.

void M.DDi ag::switchRows(int, int)

{
M.D: :error("MDDi ag:: switchRows",
"You cannot do this, you nmoron.");

15

4.2 .makeXXX and .declarexXXX

Thefirst order of businessis to provide the Matrix member functions, .makeX XX and .declareXXX, for
transforming a generic matrix into the new model. Thisis purposely put here, rather than the in the file
MatrixD.cc (or MatrixC.cc), to prevent the necessity of linkingto all possible datamodel swhen using ma-
tricesin application programs. The simpler of thetwo is.makeXX X, which forcesthe operation (almost)
regardless of the matrix’sdata. Asan example, consider the function Mat r i xD: : makeDi agonal () .

Mat ri xD& Matri xD: : makeDi agonal ()
{
static MDD ag* pNewVLD;
static int i;

if(_pm->r I= _pm->c¢c) {
/1 This call to an error function shoul d
/1l be replaced with a legitinmate
/1 exception handl er.
M.D: :error("MtrixD:: makeDi agonal ",
“"Matrix is not square.");
}

if(typeid(*_pm) !'=typeid(M.DDiag)) {
pNewWMLD = new M.DDi ag(_pm->_r, 0.0);

for(i =0; i < _pm->r; i++) {
pNewMLD->_nii] = _pm->value(i,i);
}

if(--(_pm->rc) == 0) delete _pm;
_pm = pNewMLD;
}

return *this;

}

A minimal check is done to make certain that the original matrix isindeed square. If it is, and if the data
model is not already M_DDi ag, a new M_LDDi ag model is constructed having the appropriate number
of rows and zero along the diagonal. Of course, the arguments of the constructor are at the discretion of
the model’ s designer. Datafrom the old model arethen loaded into the new. The virtual member function
.valueisassured to return the correct number regardless of the old datamodel used. MLDDi ag storesonly
the diagonal elementsin an array named _m

Theall-important final step in this processisto connect the Matrix object with its new data. First, the
old data must be disconnected. The reference counter is decreased and, if it reaches zero —which means
that no other matrix possesses these data— then the old data must be deleted. Failure to do thiswill result
inamemory leak. Finally, the Matrix’s data pointer is set to the new model’s address, and areferenceto
the Matrix itself is returned.

16

Notice that a. makeXXX function forces the transformation. In this case, the matrix need not have
been diagonal originally, and after the functionisinvoked, it has no way of recovering the off-diagonal el-
ementsit once possessed. On the other hand, the corresponding function. decl ar e XXXwill not operate
unlesstheoriginal matrix actually hasthepropertiesof thenew datamodel. Thus, Mat r i xD: : decl ar eDi agonal ()
will not perform its function unless all off-diagonal elements of the matrix invoking it vanish. All the
checksthat assure that a matrix’s data actually conform to the new model must be made within the corre-
sponding Mat ri xD: : decl ar e XXX program.

Mat ri xD& Matri xD: : decl ar eDi agonal ()

{
static int i, j, r;
if(_pm->r I= _pm->c¢c) {
M.D: :error("MatrixD::decl areDi agonal ",
"Matrix is not square.");
}
if(typeid(*_pm) == typeid(MDDiag)) {
return *this;
}
r = _pm->r;
for(i =0; i <r; i++) {
for(j =0; j <r; j++) |
if(i ==j) continue;
if(_pm->value(i, j) '=0.0) {
error("MatrixD::decl areDi agonal ",
“Matrix is not diagonal."
)
}
}
}

return nmakeDi agonal ();

}

Since thefinal line isan invocation of Mat ri xD: : makeDi agonal (), theinitial checks could actu-
ally have been omitted here, as they are done in the other function anyway. What could not have been
omitted isthe third test, that all off-diagonal elementsvanish. Again, to avoid knowing about all possible
kinds of models, we use the virtual member function . val ue to access these data. If the test is passed,
Mat ri xD: : makeDi agonal () isinvokedto completethetransformation. (Of course, it need not have
been written this way; the transformation could have been incorporated explicitly into this function.)

4.3 Constructors

Thereisa certain amount of freedom in designing amodel’s constructor interface. In the example above,
werequired an M_LDDi ag constructor with two arguments: the number of rowsand theinitial valuealong

17

the diagonal. Here isthe implementation of that constructor.

M_DDi ag: : MLDDi ag(int r, const Float8& initval)

D MD(r, r)

{
static int opsDone = initQOps();
static int i;

~m= new Float8 [r];

for(i =0; i <r; i++) {
_nmi] =initval;

}

_pdi = _m

_pdf = &(_nir-1]);

_size =r*sizeof(Float8);
}

Of course, this constructor invokes an appropriate base class constructor before entering its body. Itsfirst
obligationisto register the existence of its model with thevirtual function table. Thisisdone withthevir-

tual member functionM_DDi ag: : i ni t Ops() ,whichwill bedescribedindetail below. MLDDi ag: : i ni t Ops()
returnsani nt valuewhichisstoredinastatic variable,opsDone. Thisassuresthat MLDDi ag: : i ni t Ops()
isinvoked once and only once, i.e., the first time that this constructor is itself invoked.?

After registering with the appropriate DV FT, memory is allocated for data storage. In this case, only
the diagonal elements of a matrix are being stored, so a new array is created to hold these numbers. (Of
coursg, itsname has already been specified in the header file MLDDiag.h.) Further, the constructor allows
initialization with a value passed as a parameter, so that is done as well.

The final three lines in this constructor fulfill its responsibility to its base class. Every data model
constructor must assign values to the base class member variables: (a) _pdi , the starting address of the
(matrix element) data, (b) _pdf , the address of the last item of (matrix element) data, and (c) _si ze,
the number of bytes of (matrix element) data stored. The example shown above indicates how this should
be done. Failureto do it correctly will result in run-time errors for which no error messages or exception
handling are provided. The base class smply assumes that this task is done correctly; in any case, it has
no way of checking.

44 Registeringwith the DVFT

A new datamodel must be registered with the doubly virtual function tables (DVFT). Thisisdone with a
method i nt MLDXXX: : i ni t Ops() whichreturnsatotaly arbitrary integer value. (For the reason,
see Section ?7?.) “Registering” meansthat this method must load into the DVFT the names of functions
which determine how arithmetic is to be carried out within the model. These functions could be either
static member functions of the M_DXXX class or global functions; clearly, theformer optionisbetter. Each
function should have aname suggestive of the operationsto be carried out, eachtakestwoconst M_D*

(or const M_C*) arguments, and each returns anew M_D* (or MLC*). For example, consider the fol-
lowing, which specifies how two diagonal matrices are to be multiplied together.

?In reality, it is called once for each MLDDiag constructor that exists. Since there are only afew of them, thisis not aserious
problem.

18

M_D* M.DDi ag: : ProdDi aghi ag(const M.D* argx, const M.D* argy)

{
Fl oat 8 *px, *py, *pz;
M_DDi ag* ret = new M.DDi ag(argx->_r);

pz = ret->_pdi;
px = argx->_pdi;
py = argy->_pdi;

while(pz <= ret->_pdf) *(pz++) = (*(px++)) * (*(py++));

return ret;

}

Thisisaparticularly simple examplein which it is not even necessary to recast the arguments. Let ustry
something dlightly more involved, such as adding a diagonal matrix to an antisymmetric matrix.

M_.D* M.DAnti Symmetric:: SunDi agAsym(const M.D* argx, const M.D* argy)
{

static M_DDi ag* X;

static i nt i, r;

r = argy->r;
M_DGeneri c* ret = new M.DCGeneric(r, r);

#i f ndef NO_DYNAM C_CAST

x = dynam c_cast <const M.DDi ag*>(argx);
#endi f

#i f def NO_DYNAM C_CAST

x = (const M.DDi ag*)(argx);

#endi f

ret->l oadFronm(argy);

for(i =0; i <r; i++) ret->nfi][i] =x->nfi];
return ret;

}

TheM_DDi ag datamodel precedesM_DAnt i Symret ri ¢, soany arithmetic methodsinvolvingM_DAnt i Symmetri c
are written within itsimplementation. Thisisthe general rule, which avoids having to modify old source

files: “earlier” data models possess no information about “later” data models. In this example, we must

returnan M_LDGener i c*, apointer to datafor aGenericdatamodel. Thereisnoway of knowing whether

a more specialized data model would be correct. We recast ar gx asan MLDDi ag* so that we can later

access its data array _mby name. (The program did not have to be written in this manner; thisis done

by way of example.) The computation is accomplished by first loading the data from the antisymmetric

matrix intor et . Thisleavesthetask of adding datafrom the diagonal matrix, but that is simplified, since

an antisymmetric matrix has zeroes along the diagonal. Thus, the diagonal elements of the answer arethe

same as those of the diagonal matrix summand.

19

A similar function, MLDANnt i Symmet ri c: : SumAsynDi ag, would have to be written to handle
the arguments in reverse order. In this case, since addition is commutative, and if an extra function call
here or there is not considered important, it can be implemented merely by calling the other.

M_.D* M.DAnti Symmetric:: SumAsynDi ag(const M.D* argx, const M.D* argy)
{

return M.DAnti Symmretric:: SunDi agAsym(argy, argx);
}

Of course, thiswould not bethe casewith matrix multiplicationfunctions, suchasM_DAnt i Symmetri c: : ProdDi agAsym
and MLDAnt i Synmet ri c: : ProdAsynDi ag.
We consider one more example.

M_D* M.DDi ag: : ProdM22Di ag(const M.D* argx, const M.D* argy)
{

static M.DDi ag* X;

static int i, j;

static Float8 mul tiplier;

MLD22* ret = new M.D22;
ret.loadFron(argx);

#i f ndef NO_DYNAM C_CAST

y = dynam c_cast<const MDD ag*>(argy);
#endi f

#i f def NO_DYNAM C_CAST

y = (const M.DDi ag*)(argy);

#endi f

for(j =0; j <2; j++) {
multiplier = y->nij];
for(i =0; i <2; i++)

{

}
}

return ret;

}

Here, it makes senseto return a2 x 2 datamodel asthe product of a2 x 2 with aDiagonal matrix. Ineach
case, the devel oper must discern which model should be returned.

Now, pleasenote: evenif MLDXXX: : i ni t Ops() doesnothing except returnavalue, arithmeticwill
gtill take place. Thisis because the base class, MLD, possessesitsown MLD: : i ni t Qps() method that
loads a default set of arithmetic functions into the DVFT. The code below shows one of these.

ret-> nfi][j] *= nultiplier;

M_D* ProdBaseBase(const M.D* x, const M.D* y)
{

static int i, j, k, r, c;

20

static Float8 answer;

r
Cc

X->r;
y-> C;

M_DGeneri c* pgen = new M.DGeneric(r, c);

for(i =0; i <r; i++) for(j =0;] <¢c; j++) {
answer = 0.0;
for(k =0; k < x->c¢; k++) {
answer += x->value(i, k) * y->value(k, j);
}

pgen-> n{i][j] = answer;

}

return pgen;

}

The default functionsmay not work asefficiently as specialized arithmetic functions, and, by default, what
they return is always a Generic data model, but by not replacing them in the DVFT the code developer

effectively states that they are good enough.

On the other hand, if they are not good enough, then the new arithmetic functions must be loaded into
the DVFT arrays, Sunwt bl , Di f f Vit bl , and Pr odVt bl , which respectively handle addition, subtrac-
tion, and multiplication of matrices. Ashasbeen mentioned several timesalready, thisistheresponsibility

of the member function i nt MLDXXX: : i ni t Ops() (or i nt MLCXXX: :i nit Qps()), whichas

signs the names of the arithmetic functions to the correct elementsin the DVFT arrays. For example:

i nt M.DDi ag:
{

for(int i

SinitOps()

= FPCL_I NDEX_D_BASE;

i < FPCL_M.D_TYPES;

i ++)
Sunwt bl
Sunwt bl

Di ffVtbl

Pr odVi bl
}s

Sunwt bl [
Di ffvthbl[
Pr odVt bl [

Sumvt bl [
Ssumvt bl [
Di ffVtbl[

{

[FPCL_INDEX D DIAG][i]
[i][FPCL_INDEX D DI AG]
Diff Vibl[FPCL_INDEX D DIAG][i]
[i][FPCL_INDEX D DI AG]
ProdVtbl [FPCL_INDEX D DIAG][i]
[i][FPCL_INDEX_D DI AG]

FPCL_I NDEX_D DI AG][
FPCL_I NDEX_D DI AG] |
FPCL_I NDEX_D DI AG]|

FPCL_I NDEX_D_GEN]
FPCL_I NDEX_D_DI AG

[
11
FPCL_INDEX_D_GEN]|

FPCL_I NDEX_D_DI AG]
FPCL_I NDEX_D_DI AG]
FPCL_I NDEX_D_DI AG]

FPCL_I NDEX_D_DI AG]

FPCL_I NDEX_D_GEN]
FPCL_I NDEX_D_DI AG]

21

SunDi agBase;
SunBaseDi ag;
Di f f Di agBase;
Di f f BaseDi ag;
Pr odDi agBase;
Pr odBaseDi ag;

SunDi agDi ag;
Di f f Di agDi ag;
Pr odDi agDi ag;

Suntenbi ag;

SunDi agGen;
Di ff GenDi ag;

Diffvtbl[FPCL_INDEX D DIAG][FPCL_INDEX D GEN] = DiffDi agGen;
Prodvt bl [FPCL_INDEX D GEN][FPCL_INDEX D DIAG] = ProdGenDi ag;
Prodvt bl [FPCL_I NDEX D DIAG][FPCL_INDEX D GEN] = ProdDi agGen;
Sunwvtbl [FPCL_INDEX D M2][FPCL_INDEX D DIAG] = SumvR2Di ag;
Sunwvtbl [FPCL_INDEX D DIAG][FPCL_INDEX D M2 | = SunDi agM22;
Diffvtbl[FPCL_INDEX D M2][FPCL_INDEX D DIAG] = DiffM2Di ag;
Diffvtbl[FPCL_INDEX D DIAG][FPCL_INDEX D M2 | = DiffD agM2;
Prodvt bl [FPCL_I NDEX D M22][FPCL_INDEX D DIAG] = ProdM2Di ag;
Prodvt bl [FPCL_I NDEX D DIAG][FPCL_INDEX D M2] = ProdDi agM2;
< ... etcetera, etcetera, etcetera ... >

return 1;

}

Developers of data models can provide as many or as few of these as they consider useful.

45 Additional arithmetic operations

In addition to the DV FT, which comeinto play when binary arithmetic operators are sandwiched between
two matrices, the virtual methods presnted in the table below are invoked by other kinds of arithmetic
expressions. Thefirst column of the table contains samples of application-level expressionswhich would
activate the corresponding methods; here, Mand N represent Matrix objects and x a scalar variable (i.e.,
double or complex).

M*= N | void MDXXX: :opMiltEgqM.D
void M.CXXX::opMiltEgM.C
M += x void M.DXXX:: opPl usEqgFl t
void M.CXXX:: opPl usEqgFl t
void M.CXXX:: opPl useqCmp const Conpl ex8& x)
M-= x void M.DXXX::opSubEqgFI t const Fl oat8&)

(const M.D*)

(

(

(

E
void M.CXXX::opSubEgFIt (const Float8&)

(

(

(

(

(

(

const M.Cr)
const Fl oat 8&)
const Fl oat 8&)

void M.CXXX::opSubEgqCnp const Conpl ex8&)

M+ x,or | MLD* M.DXXX: : add const Fl oat8&) const
X + M M.C* M.CXXX: : addFl t const Fl oat 8&) const
M.C* M.CXXX: : addCnp const Conpl ex8&) const
M- x,or | MLD* MLDXXX: : subt ract const Fl oat 8&) const
X - M M_.C* M.CXXX: :subtractFlt const Fl oat 8&) const
M_.C* M.CXXX::subtractCrp (const Conpl ex8&) const

By way of illustration, we offer below the source code for MLCDi ag: : subt r act Cnp.

M_C* M.CDi ag: : subtract Chp(const Conpl ex8& x) const

{
static M.CDi ag* ret;
static Conpl ex8* p;

22

#i f def NO_DYNAM C_CAST
ret = (MCDiag*) (this->Clone());

#el se
ret = dynam c_cast <M.CDi ag*>(this->C one());
#endi f
for(p=ret->_pdi; p <=ret-> pdf; p++) {
(*p) -=Xx
}
return ret;

}

Asaways, tests are made at the highest possiblelevel, so confirmation that the matrix is square was done
at the Matrix level, beforeinvoking MLCDi ag: : subt r act Cnp. This method does not change the data
initsobject but returnsa pointer to anew M_Cdatastruct, r et , whichisfirst constructed asaclone of the
origina. (The NO_DYNAM C_CAST macro alows for compilers which do not understand RTTI. Their
number is decreasing with time and, it is hoped, will soon go to zero.) Since only diagona elements are
carried by MLCDi ag, the argument x is simply subtracted from all of them. Although it does not ook
it, this method is sufficient for both expressions“M x” and “x- M” because the sign change arising from
non-commultativity will automatically be handled at a higher level.
Asan example of amodel containing non-diagonal elements, consider the following.

M_D* M.DGeneri c::add(const Fl oat8& x) const

{
static M.DGeneric* ret;

static int i;

#i f def NO _DYNAM C CAST
ret = (M.DGeneric*) this->Cl one();

#el se

ret = dynam c_cast<M.DCGeneric*>(this->Cone());
#endi f

for(i =0; i <ret->1r1; i++) {

ret-> nfi][i] += x;

}

return ret;
}

On the other hand, the above methods which return avoi d are meant to alter their objects’ data.

voi d M.DDi ag: : opPl useqFl t (const Fl oat8& x)

{
static Float8* p;

for(p = _pdi; p <= _pdf; p++) {
(*p) += X
}

23

}

voi d M.DGeneric::opPluskgFlt(const Fl oat8& x)

{
static int i;
for(i =0; i < _r; i++) {
_mi][i] +=x;
}
}

Asusual, if the operation is not appropriate for the data model, an error condition should be thrown.

void M.DAnti Symretric:: opPl usEgFlt(const Fl oat8& x)
{
#i f def NO_DYNAM C_CAST
M_DANnti Symmetric* ret = (M.DAnti Symmetric*) this->C one();
#el se
M.DANnti Symmetric* ret = dynam c_cast <M.DAnti Synmetric*>(this->Cone());
#endi f
if(x ==0.0) {
return ret;
}
el se {
M.D: :error("MDAnti Symmetric:: opPl usegFl t",
"Cannot make di agonal el ement non-zero.");
}
}

Finally, it isnot at all necessary that the returned model be the same type asthe original.

M_.D* M.DAnti Symmetric::add(const Float8& x) const

{
static M_.DGeneric* ret;

static int i;

ret = new M.DCGeneric(_r, _c);
ret->loadFrom(this);

for(i =0; i <ret->1r; i++) {
ret-> nfi][i] += x;

}

return ret;

}
Here, an AntiSymmetric Matrix is converted to a Generic one by adding something along the diagonal.

24

4.6 Streaming methods

Two virtual functions provide the “light persistence” mechanism of reading to or writing from streams:

void M.D::witeTo(ostream&) has abase class implementation, which acts as the defaullt,

while MLDXXX: : r eadFrom(i streanm&) isapurevirtua function and, therefore, must possess a
specific implementation for each data model. (Of course, the M_C genus behaves the same.) It isthere-
sponsibility of the .writeTo method to write its object’s data to the stream identified in its argument, and

of .readFrom toread it back from the stream. Of course, the latter must be written in away that takesinto
account how the former actually wrote the data. In particular, if the base classMLD: : wri t eTo is not
overloaded, then the designer must implement M_DXXX: : r eadFr omfollowing the pattern set forth in
M_DGeneri c: : readFromor MLDDi ag: : r eadFr om That pattern, takenfromthecl ass M_DGeneri ¢
is shown below.

void M.DGeneric::readFron(istrean& is)

{
static char dumy[20];
char byte;
char* byte ptr;
static int i, j, k;

short nunber;
is >> dummy; /! Reads either "formatted" or "dunp"

/1 This should take care of the header interpretation. Now
/1 we’ll read in the actual data.

if (strenp(dunmy, "formatted") == 0){
/1 Here are the only nodel specific |ines of code....
/1 Begin: nodel specific code........................

for(i =0; i < _r; i++) for(j =0;] < _c; j++) {
is > milljl;

}

/1 End: nmodel specific code..........

}

/! Reading in a dunp......
if (0 == strncmp(dumy, "dump", 4))
{
// Read in the '\n" character first.....
is.unsetf(ios::skipws);
is >> byte;
is.setf(ios::skipws);

/1 Now read the data......
byte ptr = (char*) _pdi;
for(k = 0;

k < _size;

25

k++, byte ptr++)

{
switch(dummy[5]){ // Extract the dunp base.
case '2': is.unsetf(ios::skipws);
i s.get(byte);
[l is >> byte;
*byte_ptr = byte;
br eak;
case '8 : is >> oct >> nunber;
*byte_ptr = (char)nunber;
br eak;
case '1':
swi tch(dunmy[6]) {
case '0': is >> dec >> nunber;
*byte_ptr = (char)nunber;
br eak;
case '6': is >> hex >> nunber;
*pbyte ptr = (char)nunber;
br eak;
}
br eak;
}
}
is.setf(ios::skipws | ios::dec);

}
}

Only afew lines, sandwiched between comments that identify them, are specific to the model. Thus, for
example, to change this codeinto that of M_LDDi ag: : r eadFr om merely substitute

for(i =0; i < _r; i++) for(j =0;] < _c; j++) {
is >> tenp;
if(i ==j) _nfi] = tenp;

}

in that location. As another example, to implement MLDSymet ri c: : r eadFr om we might write
something like

for(i =0; i < _r; i++) for(j =0; j < _c; j++) {
is >> tenp;
if(i <=j) _nli][j] = tenp;
}
Onthe other hand, if the designer has overloaded MLD: : wr i t eTo, then this can be donein any way

desired, and M_LDXXX: : r eadFr omshould be compatiblewithit. For example, we may want to overload
so that only the non-zero elememts of a diagonal matrix are written to the stream. Then, we could use

for(i =0, i < _r; i++) {

26

is > nil];
}

or even
Float8* p = _pdi;
while(p <= _pdf) is >> *(p++);

inMLDDi ag: : r eadFr om Thedeveloper may also ignoreall the possible formatting options, choosing
only one as appropriate for the model. (If true persistenceis desired, it had better be the binary dump.)

4.7 Special functions

Finally, one has the option of overloading virtual functions that are not purely virtual. For example, a
.trace method is already providedin cl ass ML_D, the base class of all data models.

Fl oat8 M.D::trace() const
{

static Float8 ret;
static int i;

ret = 0.0,
for(i =0; i < _r; i++) ret +=this->value(i, i);
return ret;

}

While it works adequately by using the virtual method .value, it can be made dlightly more efficient via
overloading.

Fl oat 8 M.DDi ag: :trace() const
{
static Float8* p;
static Float8 ret;
ret = 0.0;
for(p = _pdi; p <= _pdf; p++) {
ret += *p;
}

return ret;

}
Or, consider that taking the inverse of a diagonal matrix should be very smple.

MLD* M.DDi ag: :inverse() const
{
static M.DDi ag* ret;
static int i;
ret = new M.DDi ag(_r);
Fl oat 8* pi;
Fl oat 8* pf;
for(pi = _pdi, pf =ret->_pdi;

27

pi < _pdf;

pi ++, pf++)
{
if(*pi == 0.0) {
M.D: :error("MDDi ag::inverse",
"Matrix is singular.");
*pf = MAXDOUBLE;
}
el se {
*pf = 1.0/ *pi;
}
}

return ret;

}

Depending on your energy and motivation, you should explore model-specific ways of overloading the
remaining, non-purely virtual methods in order to polish off the implementation of a new data model.

28

A Member functionsof classesML CDiag and ML DDiag

File MDD ag.cc:

Mat ri xD& Mat ri xD: : decl ar eDi agonal ()
Mat ri xD& Mat ri xD: : makeDi agonal ()

M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*

SunDi agDh ag (
Di ff Di aghi ag(
Pr odDi agbi ag(
SunBaseD ag (
SunDi agBase (
Di f f BaseDi ag(
Di f f Di agBase(
Pr odBaseDi ag(
Pr odDi agBase(

M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*

const
const
const
const
const
const
const
const
const

ar gx,
ar gx,
ar gx,
ar gx,
aragy,
ar gx,
argy,
ar gx,
argy,

int MLDDiag::initOps()
M.DDi ag:: M.DDi ag(int r,

M.DDi ag:: M.DDi ag(int r,
M_DDi ag:: ~ M_.DDi ag()

voi d M_.DDi ag:: | oadFrom(const

void M.DDi ag::readFrom(istream& is

int M.DDi ag::vtbl Il ndex()

const
const
const
const
const
const
const
const
const

M.D* x)

)

M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*
M.D*

const Fl oat8& initval
const Fl oat8* initval

Fl oat 8 M.DDi ag::value(int i, int j) const
bool M.DDi ag::setValue(int i, int j, const
MLD* M.DDi ag:: C one() const

M.D* M.DDi ag:: Enpt yCl one() const

M_.C* M.DDi ag:: cl oneConpl ex() const

void M.DDi ag::switchRows(int, int)

void M.DDi ag::switchColums(int, int)

Fl oat 8 MLDDi ag:: det ermi nant () const
Fl oat 8 M.DDi ag::trace() const
M.D* M.DDi ag::transpose() const

M.D* M.DDi ag::inverse() const

Mat ri xEi genDat a M_DDi ag: : ei gen() const

voi d M.DDi ag:: opPl useqFl't (const

29

Fl oat 8& x)

ar gy
ar gy
ar gy
ar gy
ar gx
ar gy
ar gx

ar gy
ar gx

)
)

— N N N N N N N

Fl oat 8& x)

File M.CDi ag. cc:

Mat ri xC& Matri xC:: decl ar eDi agonal ()
Mat ri xC& Matri xC:: makeDi agonal ()

M.C*
M.C*
M.C*
M.C*
M.C*
M.C*
M.C*
M.C*
M.C*

M.C*
M.C*
M.C*
M.C*
M.C*
M.C*
M.C*
M.C*
M.C*

const
const
const
const
const
const
const
const
const

SunDi agDiag (
Di ff Di agDh ag(
ProdDi agD ag(
SunBaseDiag (
SunDi agBase (
Di f f BaseD ag(
Di f f Di agBase(
Pr odBaseD ag(
Pr odDi agBase(

ar gx,
ar gx,
ar gx,
ar gx,
aragy,
ar gx,
aragy,
ar gx,
aragy,

int MLCDi ag::initQOps()

const
const
const

M.CDi ag: : MCDi ag(int r,
M.CDi ag: : MCDi ag(int r,
M.CDi ag: : MCDi ag(int r,
M_CDi ag: : "MLCDi ag()

Cont
Fl oc
Cont

voi d M.CDi ag: :| oadFronm(const M.C*

void M.CDi ag: :readFrom(istream& is
int M.CDi ag:: vtbl I ndex()

Conpl ex8 MLCDi ag::value(int i, int
bool M.CDi ag::setValueFlt(int i, i
bool M.CDi ag::setValueCp(int i, i

M.C*
M.C*

M.CDi ag:
M.CDi ag:

:Clone() const
:Enmpt yC one() const

void M.CDi ag::switchRows(int, int
void M.CDi ag: :swi tchCol ums(int, i

Conpl ex8 M.CDi ag:: determi nant() cor
Conpl ex8 M.CDi ag::trace() const
MLC* M.CDi ag: :transpose() const
ML.C* M.CDi ag: :dagger () const

M.C* M.CDi ag: :inverse() const

voi d M.CDi ag: : opPl uskqgFl t
voi d M_.CDi ag: : opPl useqCnp

(const
(const

void M.DDi ag::

void M.DDi ag::
M.D* M.DDi ag::

M.D* M.DDi ag::

OpSubEqFI t (const Float8& x)

opMiul t EQMLD (const M.D* x)
add(const Float8& x) const

subtract(const

Fl oat 8& x) const

30

voi d
void
void
M_C*
M_C*
M_C*
M_C*

M.CDi ag:
M.CDi ag:
M.CDi ag:
M.CDi ag: :
M.CDi ag:
M.CDi ag:
M.CDi ag:

1 OpSubEgFI t (const
1 0pSubEqCMp (const
opMul t EQMLC (const

addFl t (const Fl oat 84

:addCmp(const Conpl ex
:subtractFlt(const Fl
:subtract Crp(const Cc

