SciNOvA: A Measurement of Neutrino-Nucleus Scattering in a Narrow-Band Beam

Outline of talk:
- overview
- science case:
 - ν scattering physics
 - NOvA enhancements
- project plan
- conclusions/requests
SciNOvA: Overview

We propose to reinstrument the existing SciBar detector and deploy in front of the NOvA near detector in the NuMI (off-axis) 2 GeV narrow-band beam. A fine-grained detector such as SciBar in this location enables important and unique ν scattering measurements and enhances the NOvA ν oscillation measurements.
SciNOvA: overview

The SciBar detector:

- Consists of ~15k extruded 1.3x2.5x290cm³ scintillator strips arranged in 64 (x+y) layers,
- originally built for the K2K experiment,
- then moved to FNAL for SciBooNE
- ran in booster $\nu/\bar{\nu}$ beam 6/07-8/08

SciBooNE event display

- analyses published:
 - CCπ^+, Phys. Rev. D 78, 112004 (2008),
 - NCπ^0, arXiv:0910.5768[hep-ex], sub'd to PRD.
- analyses in progress:
 - CCQE, NCel, CCπ^0, ν_μ disappearance, ν_e events
- PMTs and readout electronics removed and sent back to KEK, SciBar scintillators and fibers remain at FNAL (in SciBooNE enclosure).
SciNOvA: overview

The SciBar detector at NOvA near location:
- narrow-band beam, substantial flux
- leading to large event rates

<table>
<thead>
<tr>
<th></th>
<th>Charged-current</th>
<th>Neutral-current</th>
</tr>
</thead>
<tbody>
<tr>
<td>elastic</td>
<td>220</td>
<td>86</td>
</tr>
<tr>
<td>resonant</td>
<td>327</td>
<td>115</td>
</tr>
<tr>
<td>DIS</td>
<td>289</td>
<td>96</td>
</tr>
<tr>
<td>coherent</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>total</td>
<td>845</td>
<td>302</td>
</tr>
<tr>
<td>$\nu + A \rightarrow \pi^0 + X$</td>
<td>204</td>
<td>106</td>
</tr>
</tbody>
</table>
We are requesting:
- Support for science case and project strategy such that we can proceed expeditiously with:
 - further collaboration-building
 - FNAL-specific costing (moving detector, etc)
 - negotiations for detector with Kyoto U.
 - pursuit of funding (for PMTs/readout)
 - full proposal for the experiment
Science case: neutrino scattering measurements

In era of precision ν oscillation measurements, made possible at the Intensity Frontier, it is crucial to understand the detailed physics of neutrino scattering (at few-GeV)

Requires: Precise measurements to enable a complete theory valid over wide range of variables (reaction channel, energy, final state kinematics, nucleus, etc)

A significant challenge:
- non-monoenergetic beams
- large backgrounds
- nuclear scattering (bound nucleons)

New measurements are forthcoming:
- MiniBooNE, SciBooNE (publications appearing)
- MINERvA, μBooNE, T2K (coming soon)

But will require even more input, especially as puzzles arise.

EG: in CCQE scattering.....
CCQE scattering

Charged-current quasielastic scattering (CCQE):
- crucial process to understand as it is...
 - detection signal for both $\nu_\mu \rightarrow \nu_e$ and $\nu_\mu \rightarrow \mu_\mu$ (in far detector),
 - normalization signal for ν_μ flux (in near detector)

- Thought to be a simple process....
 - Llewellyn-Smith formalism for diff cross section:

$$\frac{d\sigma}{dQ^2} \left(\frac{\nu_l + n \rightarrow l^- + p}{\bar{\nu}_l + p \rightarrow l^+ + n} \right) = \frac{M^2 G_F^2 \cos^2 \theta_C}{8 \pi E_{\nu}^2} \left\{ A(Q^2) \pm B(Q^2) \frac{(s - u)}{M^2} + C(Q^2) \frac{(s - u)^2}{M^4} \right\}$$

- with only one unknown parameter, M_A (via axial form factor, F_A):
 $$F_A(Q^2) = - \frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2}$$

- and a CCQE measurement (has been) equiv. to M_A measurement.

- However:
 - non-monoenergetic beams
 - different detection details between exps. (recoil nucleon detected?)
 - backgrounds (some “irreducible”, eg CCπ w/π absorption)
 - bound nucleons

- and a puzzle has emerged (with newer data)....
CCQE scattering
A current puzzle in CCQE scattering:
- Previous results mainly from light nuclei indicate axial mass, \(M_A \approx 1.03 \pm 0.02 \) GeV.
- Agrees with pion electro-production data.
- recent results from heavier targets in K2K, MiniBooNE, MINOS, from \(Q^2 \)-shape fits, indicate higher values (by 10-30%) (MiniBooNE result: \(M_A = 1.35 \pm 0.17 \) GeV)
- absolute CCQE cross section (flux-normalized rate) from MiniBooNE agrees better with this larger \(M_A \).
- Also, (preliminary) SciBooNE results show higher total cross section.
- However, recent results from NOMAD (carbon) at 3-100 GeV show expected (from world-average \(M_A \)) cross section
CCQE scattering

Much recent theory work on CCQE scattering and the “high-MA” puzzle:

J. E. Amaro et al.,
Phys. Rev. C 71, 015501 (2005);
Phys. Rev. C 75, 034613 (2007);
T. Leitner et al.,
Phys. Rev. C 73, 065502 (2006);
Phys. Rev. C 79, 065502 (2006);
O. Benhar et al.,
Phys. Rev. D 72, 053005 (2005);
arXiv:0903.2329 [hep-ph];
A. Butkevich et al.,
Phys. Rev. C 76, 045502 (2007);
Phys. Rev. C 80, 014610 (2009);
S. K. Singh et al.,
arXiv:0808.2103 [nucl-th];
J. Nieves et al.,
Phys. Rev. C 73, 025504 (2006);
N. Jachowicz et al.,
Phys. Rev. C 73, 024607 (2006);
A. M. Ankowski et al.,
Phys. Rev. C 77, 044311 (2008);
A. Meucci et al.,

- No solution has yet emerged.

- However, a (very) recent work by Martini et al (arXiv:0910.2622v1 [nucl-th]) proposes a model that reproduces larger CCQE cross section.... needs further scrutiny
CCQE scattering

- A measurement with the SciBar detector (which has produced CCQE measurements in SciBooNE/K2K)...
- in the narrow-band 2 GeV $\nu, \bar{\nu}$ beam, where CCQE vs CCpi kinematics, are more easily separated..
- will be invaluable in testing/guiding future CCQE models

neutrino event rate at NOvA near location

event rate from NuMI near locations

Medium Energy Tune

- on-axis
- 7 mrad off-axis
- 14 mrad off-axis
- 21 mrad off-axis

- **NOvA**

MiniBooNE & others CCQE data

- **Events / 15 tons / year / 50 MeV**
- **Neutrino Energy (GeV)**
- **σ (cm^2)**
- **E_{\nu} (GeV)**
additional ν scattering measurements

Additional measurements of interest:

- neutral-current π^0 production ($\text{NC}\pi^0$)
- differential cross section (rate) important to understand for oscillation measurement as background
- current interest/debate on coherent contribution in the 1 GeV energy range

- neutral-current nucleon elastic scattering (NC_{el})
- most fundamental NC probe of nucleus
- comparison to CCQE can provide information about additional isoscalar contributions to nucleon spin (such as strange quarks)

\[
\nu_\mu (p, n) \rightarrow \nu_\mu (p, n) \pi^0, \pi^0 \rightarrow \gamma \gamma
\]

\[
\nu_\mu \rightarrow \text{resonant} \quad \nu_\mu \rightarrow \text{coherent}
\]

NC\pi^0$ production

\[
\nu_\mu (p, n) \rightarrow \nu_\mu (p, n)
\]

NC elastic
Science case: enhancements to NOvA program

- SciNOvA will enhance the NOvA program by providing a test of the background prediction with a fine-grained detector (SciBar).
- In particular, the NCπ^0 background
- And may allow a reduction in the NCπ^0 background uncertainty (from current estimate of 10%).
enhancements to NOvA program

- An initial event scan of π^0 vs e^- events in NOvA vs NOvA+SciBar

Which are e^- or π^0?
enhancements to NOvA program
- An initial event scan of π^0 vs e^- events in NOvA vs NOvA+SciBar
enhancements to NOvA program

- An initial event scan of π^0 vs e^- events in NOvA vs NOvA+SciBar
- $1/2$ of π^0s not resolved by NOvA alone were resolved by NOvA+SciBar

<table>
<thead>
<tr>
<th></th>
<th>NOvA Alone</th>
<th>NOvA + SciBar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>scan=electron</td>
<td>scan=electron</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>scan=pizero</td>
<td>scan=pizero</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>true=electron</td>
<td>true=pizero</td>
</tr>
<tr>
<td></td>
<td>true=pizero</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>true=electron</td>
<td>true=pizero</td>
</tr>
<tr>
<td></td>
<td>true=pizero</td>
<td>74</td>
</tr>
</tbody>
</table>

Hand scan of 500 events
- P = 2 GeV
- pid chosen randomly 50/50 electron or pizero
- vertex location chosen 50/50 in SciBar or in NOvA
- vertex location and angles randomized to avoid scanning bias

Raw data: #'s are event counts

Scaled so that “perfect” performance would have 100% on diagonal

Overall: $199/247 = 81\%$ correct assignments w/ NOvA

$222/253 = 88\%$ correct assignments w/ NOvA + SciBar

Probability to correctly identify an electron: $108/124 = 87\%$ NOvA, $118/132 = 89\%$ w/ SciBar

Probability to correctly identify a pizero: $91/123 = 74\%$ NOvA, $104/121 = 86\%$ w/ SciBar

Purity of electron sample = $108/140 = 77\%$ NOvA, $118/135 = 87\%$ w/ SciBar

Purity of pizero sample = $91/107 = 85\%$ NOvA, $104/118 = 88\%$ w/ SciBar
The more fine-grained SciBar detector would enable a data-driven calculation and a double-check of the NCπ^0 background in NOvA.
experimental plan
Moving the SciBar detector at NOvA near location:

- (short) study by FNAL PPD engineering indicated no show-stoppers, but some challenges:
 - access shaft clearance is tight
 - MINOS crane not adequate for fully assembled SciBar
experimental plan

Reinstrumenting the SciBar detector for SciNOvA:

- PMTs/readout electronics removed from SciBar after SciBooNE completed

- At Indiana U., a system has been developed (with support from Indiana U. and NSF) for WLS-fiber readout of “scibath” detector

- 15 “IRM” boards built and running!

- Integrated readout of (64-channel) PMT with flash ADC of “ringing integrator” front-end circuit for charge, time info with one-ADC channel.

- Cost:
 - $50/channel for readout (including mechanical)
 - $25/channel for PMT
costs and schedule

Estimated costs:
- readout system, equipment: $1.255M
 boards: $775k
 PMTs: 400k
 misc: $80k
- readout system, personnel: $290k
- readout total (w/overhead) $1.75M

- costs of moving detector and associated, TBD.

Schedule:
- 11/09 FNAL support agreed (details TBD)
- 01/10 NSF MRI submission
- 08/10-12/11 PMT/readout procurement/fabrication
- 08/10-12/11 scibar detector move planning, support fabrication
- 01/12-06/12 commissioning, substructure assembly
- 07/12 ready for installation at NOvA near location
Using the SciBar detector

Using the SciBar detector:
- Detector is owned by Kyoto U.
 Would need to negotiate usage for SciNOvA.

- There is another idea for use of SciBar detector:
 - If SciNOvA is encouraged, this would be negotiated further.

Proposal to use the SciBar detector as a solar energetic particle detector at a high altitude mountain in Mexico

The SciCR Collaboration

Yoshitaka Itow, Yutaka Matsubara, Yuya Nagai, Takashi Sako
(Solar-Terrestrial Environment Laboratory, Nagoya University, Japan)

Yasushi Muraki
(Department of Physics, Konan University, Japan)

Kazuoki Munakata
(Department of Physics, Shinshu University, Japan)

Shoichi Shibata
(College of Engineering, Chubu University, Japan)

Harufumi Tsuchiya
(Institute of Physical and Chemical Research, Japan)

Kyoko Watanabe
(JAXA/ISAS)

Jose Valdés-Galicia
(Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico)
Conclusions/Request:

- There is currently a window of opportunity to add to the NOvA program with the reuse of the SciBar detector in the NOvA narrow-band beam.
- This will allow new insight into neutrino scattering processes and
- enhance the NOvA ν oscillation program.

We are requesting:

- Support for science case and project strategy such that we can proceed expeditiously with:
 - further collaboration-building
 - FNAL-specific costing (moving detector, etc)
 - negotiations for detector with Kyoto U.
 - pursuit of funding (for PMTs/readout)
 - full proposal for the experiment
backups etc
SciNOvA: science case

In era of precision ν oscillation measurements, made possible at the Intensity Frontier, it is crucial to understand the detailed physics of neutrino scattering.

Requires: Precise measurements as input to accurate, complete models (and vice versa)

ν–scattering models currently implemented (e.g. within NUANCE) are dated and looking to be inadequate, for example:

- CCQE, rel. Fermi Gas:
- resonant/coherent pion production:

New event generators are improving (eg GENIE), but underlying models are not very different (at least not yet).
SciBooNE CCQE

PRELIMINARY
SciNOvA: enhancements to NOvA program
- improvement to NOvA near detector ν_μ rate measurement

Reconstructed angle for 2 and 1 prong events. In 2 prong events, the energy is reconstructed assuming a muon and proton track; in the case of 1-prong QE kinematics are assumed. The accumulation at $E<2$ GeV give some sense of the feed down from RES and DIS into the QE sample. NBB helps with this.

For 2-prong events we measure the angular difference between the 2nd prong and its calculated trajectory assuming QE kinematics. This is the most useful selection for removing non-QE events. Top: NOvA, Bottom: SciBar. The QE efficiency/purity is much improved in SciBar compared to NOvA.
SciNOvA: on-axis compared to off-axis

Event rate at NuMI near locations
M_A from CCQE

- different targets/energies

- world average from Bernard, et al, JPhysG28, 2002: $M_A = 1.026 \pm 0.021$
 (also, M_A from π photo-production similar)

- However, recent data from some high-stats experiments not well-described with this M_A and/or the simple model described on previous page

Summary of ν, $\bar{\nu}$ measurements of M_A

![Graph of M_A measurements](image)

Fig. 18. A summary of existing experimental data: the axial mass M_A as measured in neutrino (left) and antineutrino (right) experiments. Points show results obtained both from deuterium filled BC (squares) and from heavy liquid BC and other experiments (circles). Dashed line corresponds to the so-called world average value $M_A = 1.026 \pm 0.021$ GeV (see review [33]).
Previous CCQE results

- total cross section measurements as func of E_ν

- different targets, different energies

- curve is that predicted with M_A of this NOMAD measurement
MiniBooNE CCQE results

- most complete and most model independent specification of CCQE reaction (from μ kinematics)

This is result best used to compare to models
MiniBooNE CCQE results

flux-average differential cross section

![Graph showing flux-average differential cross section](image-url)
MiniBooNE CCQE results

$M_A^{\text{eff}} - \kappa$ shape-only fit result

$M_A^{\text{eff}} = 1.35 \pm 0.17$ GeV (stat+sys)

$\kappa = 1.007^{+0.007}_{-\infty}$ (stat+sys)

$\chi^2/\text{ndf} = 47.0/38$

- κ is Pauli-Blocking adjustment parameter that gives extra dof to fit at low-Q^2.
- MB data now consistent with $\kappa = 1$. Change from earlier result due to new CCπ background.
Preliminary CCQE results from SciBooNE
- 1 track (µ) MRD-stopped sample

- total measured rate data in excess compared to Neut MC ($M_A = 1.2\text{GeV}$)
- excess of data at $Q^2 > 0.2 \text{ GeV}^2$
- both are (qualitatively) similar to MiniBooNE observations