The Run IIb CDF Detector Upgrade Project

Patrick Lukens
Fermilab
The CDF Run IIb project exists to keep the experiment vital during high luminosity operation.

Originally, the project was motivated by both high integrated and instantaneous luminosity.

- Reduced integrated luminosity projections reduced the motivation for the silicon detector, resulting in its cancellation.

- Design goal instantaneous luminosity projections are still ~3×10^{32} cm^{-2}s^{-1}
 - Now at 396 ns crossing – higher occupancies than planned

- Portions of the project motivated by instantaneous luminosity are still needed and have been retained
Run IIb Project Scope

- Calorimeter Upgrades
 - Preshower Upgrade
 - Electromagnetic Timing

- Data Acquisition and Trigger Upgrades
 - TDCs for the drift chamber
 - Level 2 Decision crate
 - Fast track trigger Upgrade
 - Event Builder Upgrade
 - Level 3 computer upgrade
 - Silicon Vertex Trigger upgrade

11 November 2004
The preshower upgrade replaces the older gas chamber system with scintillator.

- Fiber/multichannel PMT readout – similar to what’s used on the endplug.

Significant foreign contribution here

- PMT from Japan
- Scintillator/fibers from Italy
System was planned for an assembly hall installation in FY 2006

Schedule was adapted to accommodate accelerator shutdowns
- Accelerated production of scintillator tiles, modules
- Procurement of PMTs by Tsukuba was advanced
- The project targeted Fall 2004
 - Shutdown for 2005 projected to be shorter

11 November 2004
Calorimeter Installation

- Preshower installation involves detector installation on the inner surface of the calorimeter
 - Never serviced in the collision hall previously.
- Phototube and cables are installed on the back.
- All parts but optical fibers were available by Sep. 2004

- All scaffolds, detector elements, people, passed through this opening.
Preshower/Crack Installation

Stefano Moccia
The fourth arch was replaced into operating position on 8 Nov. 2004. All front face work is done.

The CPR is now being incorporated into the full data stream

- Tile response measured at Argonne, PMT gain measured at Tsukuba
- Light yield is well above the specification.
- Gains are well understood at this stage – 13% spread
- CPR is 99.7% live. Remaining problems are electronics

The system is installed and working
CPR occupancy

- A cosmic ray run of the CPR system

11 November 2004
The electromagnetic timing upgrade splits a small portion of the phototube signal off for timing:

- Reduces cosmic ray or halo backgrounds for photons

Entire system was installed during the fall 2004 shutdown. Cosmic ray commissioning is in progress.
DAQ/Trigger Specification

Run IIa vs IIb

<table>
<thead>
<tr>
<th></th>
<th>Run IIa Specification</th>
<th>Run II Achieved</th>
<th>Run IIb Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>8.6x10^{31}</td>
<td>1x10^{32}</td>
<td>3x10^{32}</td>
</tr>
<tr>
<td>L1 Accept</td>
<td>45 kHz</td>
<td>25 kHz</td>
<td>30 kHz</td>
</tr>
<tr>
<td>L2 Accept</td>
<td>300 Hz</td>
<td>400 Hz</td>
<td>1000 Hz</td>
</tr>
<tr>
<td>Event Builder</td>
<td>75 MB/s</td>
<td>75 MB/s</td>
<td>500 MB/s</td>
</tr>
<tr>
<td>L3 Accept</td>
<td>75 Hz</td>
<td>80 Hz</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Rate to Storage</td>
<td>20 MB/s</td>
<td>20 MB/s</td>
<td>40 MB/s</td>
</tr>
<tr>
<td>Deadtime Trigger</td>
<td>5%</td>
<td>10%</td>
<td>5% + 5% †</td>
</tr>
</tbody>
</table>

- Run IIa L1A not achieved due to higher than specified Silicon Readout + L2 Trigger execution times
- † Assume ~5% from readout and ~5% from L2 processing
- Reminder: IIb trigger & bandwidth rates estimated based upon Run IIa, significant underestimate possible (assumes linear growth in fake contribution)

11 November 2004
Trigger/DAQ Upgrades for Run IIb

- COT TDC upgrade
 - Original readout rate insufficient
- COT Track Trigger Upgrade
 - L1 trigger rate reduction needed
 - Complexity of events (occupancy)
- Silicon Vertex Trigger upgrade
 - Occupancy demands processing speed
- L2/L3 trigger upgrades
 - Processing speed/modernization
- Event builder upgrade
 - Processing speed upgrade needed
 - Level 2 accept rate is insufficient

11 November 2004
Run IIa TDC Limitations (2002)

- On-board processing (DSP)
 Time grows with # of hits
 - \(t = 1200\mu s/\text{event} \) for SL1 (4 hits/ch) at \(4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1} \)

- VME Readout
 - Read sequentially by one block transfer (~14MB/s at high lum.)

- VME – Event builder link limited to 12 MB/s

- 2002 Internal review recommended replacement
Run IIb TDC

- **840MHz Diff LVDS inputs**
- **TDC**: Serial to 10bit parallel conversion (1.2ns/bit)
- **L1/L2 Buffering, hit processing + Readout (CBLT)**
- **XFT Hit Generation**

Altera Stratix FPGAs (48chan/chip)

Input Connectors And LVDS Repeaters

DC Power convertors

VME Interface

CDF Clock and Control Interface

Trigger Output Drivers (to XFT)
TDC Performance Reviews

- **Run 2a TDC**
 - DSP execution now about factor of 2 faster than in 2002
 - New compressed data format (based in Run 2b TDC), halves the data volume.
 - Measured performance with 3 hits/channel of 5% deadtime at 1kHz
 - Need to implement Fast Clear on TDCs in SL5,6 (already on SL1-4) to keep these from taking longer than SL1
 - **Meets the Run 2b readout specification**

- **Run 2b TDC**
 - 5 preproduction boards received in September pass tests
 - Implemented 64 bit VME transfer (was 32bit like rest of FE/Trig)
 - In bench tests 18MB/s (32bit VME) → 36MB/s
 - Can achieve 2kHz with less than 5% deadtime
 - **Exceeds all Run 2b specifications**

11 November 2004
Future TDC Plans

- The review committee recommended retaining the current TDCs for the remainder of the run.
- This was motivated by the perceived risk associated with commissioning a new system.
 - Installation time will require an 8 week shutdown, followed by commissioning period during Tevatron operations.
- Some modifications of the current TDCs are needed (outer layer modules).
- Final testing of new TDCs will document their performance.
Run IIa Level 2 Decision Crate

- 6 flavors of interface board
 - (XTRP, SVT), L1, ISO, MUON, CES, Cluster
 - each uses different input format, different board designs
- 1 board with Alpha processor for L2 processing/decision
 - system designed to run with 4 Alphas
 - Data input with custom bus (MagicBus)
- Diversity makes system challenging to test & maintain
- DEC α processors obsolete
- Did not achieve design execution time
- CDF internal review recommended replacing Alphas for Run IIb
- Upgrade with PULSAR board as universal interface

11 November 2004
Level 2 Status

- All hardware has been procured for the Level 2 upgrade.
- Testing with beam occurred in summer 2004
 - Parasitic operation, trigger decisions, can be tested without disruption of operations
- Installation review in Sep. identified the “to do” list
- Expect system to be in full operation by March 2005.
Run IIa XFT Configuration

Ansley trigger cable (220 ft) ~2 m copper Cable Data Neighboring cards
Data @45MHz LVDS @33MHz (channel link) connected over backplane

168 TDC from COT axial layers
24+24 Axial Finders
24 Linkers
24 LOMs

24 crates 3 crates 3 crates

TDC Hits Binned into 2 bins: “Prompt” and “Delayed”

~10 m of cable to XTRP

11 November 2004
Original XFT Upgrade

Ansley trigger cable (220 ft)
Data @45MHz LVDS

~2 m copper Cable Data
@33MHz (channel link)

Neighboring cards
connected over backplane

168 TDC from COT axial layers

24 crates

24+24 New Axial Finders

3 crates

24 New Linkers

3 crates

24 LOMs

~10 m of cable to XTRP

New TDC or XTC for stereo layers

1 crate

12 Stereo Finders SL7

1 crate

Styro Association Modules

- Retain cable infrastructure
- 4 Layers → 5 layers (add SL7)
- Finer resolution input to all
XFT II Scope Reviews

- Two CDF reviews (5/21 and 6/21) to evaluate performance and scope of the XFT upgrade and recommend course of action.
 - Hardware progress was slow
 - Not enough good Ansley cables (TDC to XFT) to instrument stereo SL7
- Significant progress in simulation since Fall 2003.
 - Reproduces trigger rates of recent higher luminosity operation
 - Performance degradation of IIa system smaller than original projections
- Committee Conclusions
 - Simulations demonstrate that original XFT upgrade can achieve goals
 - However, original XFT upgrade no longer feasible, given the time available to complete and commission the project.
 - Consensus (Committee, XFT proponents, Run IIb management) that addition of more stereo (SL 3, 5 and 7) is the most reasonable course.
Revised XFT Upgrade

Ansley trigger cable (220 ft)
Data @45MHz LVDS

168 TDC from COT axial layers
24 crates

XTC

24+24 Axial Finders
3 crates

4 Superlayers → 7 Superlayers
3 Layer Stereo tracking
Finer resolution input to Stereo
Allows parasitic testing

24 Linkers
3 crates

24 SLAMs
2 crates

New cable (~150ft)
Optical Data
~45MHz

12+12+12 Stereo Finders
SL3+5+7
2 crates

~10 m of cable to XTRP

New TDC or XTC for stereo layers

~3m optical Cable
@60.6MHz

5 Stereo Pulsars in L2 Decision Crate

Data to L2
XFT Hardware Progress

- Prototype XTC under test at Illinois and FNAL since July
 - Tested w/2 time bin and 6 time bin firmware
 - Production review Nov 12
 - Start fabrication by December

- Prototype TDC transition board and fiber transmitter mezzanine card (Illinois) under test at Illinois
 - Mezzanine card also used on finder for SLAM and L2 connections

- Target data for completion is the August, 2005
 - These components require collision hall installation

11 November 2004
XFT Hardware Progress

- **Stereo Finder (Fermilab)**
 - Schematics and layout complete, design review Nov 5
 - Parts in hand, out for fabrication/assembly by Dec 1
 - Most functionality for Finder FPGA firmware complete

- **Stereo Linker Association Module (SLAM - OSU)**
 - Schematics and layout complete, design review Sept 24
 - Parts ordered, Out for fabrication this week
 - Implemented “Pass-through” firmware

- These items are in the counting room
 - Commissioning can be largely parasitic to operations.
SVT Upgrade for SVXII

- New AM++ hardware with narrower roads (32K to 512K) reduces number of tracks to fit
 - Developed by Pisa, bought by INFN
- New AMSequencer/Road Warrior (12 Pulsars)
 - Interface for AM++
- New Hit Buffer (12 Pulsars)
- Faster Track Fitters reduce processing time on found roads (12 Pulsars)

Note 12 Pulsars will be “recycled” from current use as “Road Warrior” boards
SVT Progress

- AM++ (not on project funds) at INFN
 - Testing of new AM chips progressing - Low yield may require an additional production run. Should not be a significant project delay.
 - AM++ and LAMB mezzanine boards passed printed circuit board review Nov 3.
- Hardware for AMS/RW, HB, TF defined:
 - Quote request for 34 Pulsar boards (includes XFT) issued by Chicago
 - Design of two 2 Pulsar mezzanine boards (memory) at Chicago
 - First passed design review Nov 2, prototype parts in hand, board fabrication in progress
 - Design of second started should be ready for prototype by end of 2004
- Firmware making good progress
 - AMS/RW firmware making good progress at Pisa
 - TF firmware largely transferred from existing design to Pulsar
- Note, this installation is decoupled from collision hall access.

11 November 2004
Run IIb Event Builder Upgrade

<table>
<thead>
<tr>
<th></th>
<th>Run IIa</th>
<th>Run IIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate:</td>
<td>300Hz</td>
<td>1kHz</td>
</tr>
<tr>
<td>Event size:</td>
<td>250kB</td>
<td>500kB</td>
</tr>
<tr>
<td>Throughput:</td>
<td>75MB/s</td>
<td>500MB/s</td>
</tr>
</tbody>
</table>

SCPU: MVME2600 VMIC7805

SCPU OS VxWorks Linux

Switch: ATM Cisco 6509 (gigabit ethernet)

- New Cisco 6509 switch
- New software (much less than IIa)
- New VMIC 7805 boards (SCPUs)
Event Builder

- Hardware in hand (ahead of schedule)
- Software development and testing on schedule for installation in Aug 05
 - No collision hall access is required, but installation will require down time for the experiment.
CDF Upgrade Conclusions

- Calorimeter - **installations are complete**
- DAQ/Trigger projects are making good progress
 - New direction on TDCs – improvements in the current device and the installation risk motivate a new strategy.
 - Level 2 – entering the final integration phase
 - Track triggers (XFT and SVT) are beginning construction
 - Both have simplified their design recently
 - Event builder hardware is in hand, and software is in progress.
- All projects are targeting completion/installation by the end of FY 2005.

11 November 2004