The Run IIb CDF Detector Upgrade Project

Patrick T. Lukens
Fermilab
14 March 2003
CDF for Run IIb

- As in Run I, CDF’s strength lies in its tracking system
 - Good momentum precision, lepton ID
 - Good vertex precision – b hadron identification

- Operating conditions for Run IIb:
 - Maximum instantaneous luminosity of $4-5 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$.
 - Integrated luminosity of as much as 15 fb$^{-1}$.

- CDF’s capabilities must be retained in these conditions
Run IIa silicon system

- Radiation damage tests and rate measurements allow us to predict the lifetime of the SVXII.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Lifetime (fb⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>7.4</td>
</tr>
<tr>
<td>0</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>8.5</td>
</tr>
<tr>
<td>2</td>
<td>10.7</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>

- We are forced to replace the inner layers.

Silicon detector end view
The instantaneous luminosity of run IIb produces:

- Occupancy problems - fake triggers and overlapping events
 - An issue for the preshower and track trigger
- Data collection rate problems - handling the data volume/rate
 - Impacts the data acquisition
 - Exceeds the readout capacity of our TDCs
The CDF Run IIb Project replaces key elements needed for maintenance of the high P_T program.

To maintain CDF as a viable Higgs search experiment for Run IIb we will:

- Replace the Silicon Detector
- Upgrade the Calorimeter
- Upgrade the Data Acquisition and Trigger system

This program was approved by the Physics Advisory Committee.

- June, 2002 meeting
SVX Replacement

- The inner six layers of the silicon system are tightly coupled mechanically.
 - Disassembly would be time consuming and very risky.
 - Many parts are obsolete.
- This motivates a complete replacement with a new detector
 - ISL is retained, inner portion (SVX II) will be replaced.
 - Requires roll out of the central detector

ISL Space Frame
The replacement detector is being designed to be simple, and should be relatively quick to build.

- Based on single sided detectors
- Readout chip is common with D0, manufactured in a standard process.
- One structure is used for most of the detector
- Compatible with existing systems
 - Data acquisition
 - Cooling
Run IIb silicon system

- All inners layers will be replaced.
- New detector is designed for quick construction
- A basic module - the “stave” will be built
- This structure will populate most of the detector volume
- This gives the advantage of fewer different parts than the current detector
Silicon Detector - Run IIb

- Single sided sensors will be used for Run IIb.
 - Production readiness review was held in Feb.
 - Sensors have been ordered
- Axial and small angle stereo layers will be joined in a single structure – this is used for layers 1-5.
- Layer 0 (innermost) will be axial only, and a different structure.

Stave layout

Mini Portcard
Hybrids
Chips
Axial Sensors
Stereo Sensors
SVX4 chip

- 1st full prototype
 - submitted - April ’02
 - received June ‘02
 - Tested at LBL and FNAL
 - No major problems found
 - Corrections for bow and channel to channel variation – fixed in new chip
 - Yield looks very good, ~85%
 - Radiation tests showed no problems

- Next Submission is in progress
 - Could be the final version
Module

- Ten modules fully assembled
- Hybrids work with No problems!
- Module tests at LBL in progress, FNAL (FCC) with full DAQ

Noise with 0, 1, and 2 sensors connected to the readout
Tests are being done at LBL and FNAL.

Full DAQ and deadtimeless operation are being tested.
● Preshower expected to suffer high occupancy and aging effects in Run IIB.
 ➢ Gas chamber system – most replaced for run II
 ➢ Occupies inner surface of central calorimeter
● Expected to provide 5-10% Jet Energy Resolution improvement, part of the 20-30% needed improvement for the Higgs search.

Central Calorimeter extracted for maintenance
Preshower Progress

- Replacement Preshower uses scintillator tiles
- Optical fiber readout with 16 channel phototubes
 - Same phototube and light collection used in the endplug calorimeter
 - Not a new technology – reuses existing electronics.
- Full-scale mechanical prototypes built at ANL.

Detector mockup and Fiber routing scheme at MSU
Prototype tests at ANL, Pisa, Rockefeller for uniformity and light yield.

Uniform Response better than 10%
Meets the spec

12 photoelectrons/MIP
Meets the spec
Electromagnetic Timing

- Electromagnetic timing needed to reject photon backgrounds from cosmic rays, in new physics searches such as SUSY.

- Timing system will take electromagnetic calorimeter signals to TDCs
 - Dynode signals taken from the endplug cal.
 - Anode signals go to a splitter in the central cal.

- Working testbench and vertical slice test shows system works as designed.

- Working prototypes of all components in hand

- Signal splitting has no degradation of the energy measurements
The DAQ/Trigger upgrades planned are driven exclusively by the Run IIb trigger and data acquisition needs to carry out our high-p_T physics program.

Our current level of understanding is based upon:

- Run IIa data: $\mathcal{L} \leq 2 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$, ~ 1 interaction per crossing
- Run I data: $\mathcal{L} \sim 2 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$, ~ 2 interactions per crossing

We are extrapolating to Run IIb:

- $\mathcal{L} = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ w/396ns bunch spacing (~ 5 int/beamX)
- $\mathcal{L} = 5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ w/132ns bunch spacing (~ 5 int/beamX)
- Due to significant uncertainties in extrapolation, and a desire to be prepared for success, we have evaluated our system for: $\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ w/396ns bunch spacing (~ 10 int/beamX)
Trigger Strategy

- Focus on Higgs & high p_T searches
 - Know that triggers needed for these modes will allow for many beyond Standard Model searches

- General requirements:
 - High p_T electrons and muons
 - Associated WH/ZH modes, also $t \to Wb$
 - Missing E_T triggers
 - ZH with $Z \to \nu \nu$, modes with taus
 - b-jet triggers
 - $H \to bb$, b-jets tagged by displaced tracks
 - Calibration triggers
 - $Z \to bb$, $J/\psi \to \mu^+ \mu^-$, photons
Data Acquisition

- Our current data acquisition is specified to operate at a level 2 trigger accept rate of 300 Hz.
- The Run IIb high P_T program requires at least 750 Hz capability.
- Upgrades are needed to
 - Event builder switch – collects data from many sources, forms an event, and moves it to the level 3 computers
 - Time to digital converters – TDCs used for the COT have an inherent readout limit at about 300 Hz.
Triggers

- The high event occupancy for Run IIb drives up the rate of fake triggers in the tracking system
 - Fast track trigger (XFT) requires upgrading
- The duration of the run motivates the need for maintenance of processors that will become obsolete, and uneconomical to maintain
 - Level 2 decision crate
 - Level 3 processors (PCs)
 - High occupancy will also drives a need for greater processing power
Trigger/DAQ Upgrades for Run IIb

General considerations:

- upgrades “targeted” to specific needs
 - e.g. COT TDCs replaced, but remaining COT readout (ASDQ, repeaters) unmodified
- retain existing infrastructure
 - cables, crates unchanged
 - I/O protocols, timings retained
 - upstream/downstream components unchanged
- upgrades plug compatible with existing components
 - take advantage of knowledge & experience
 - will aid in commissioning
Schedules

- The silicon detector sets the critical path for the project.
- A base estimate schedule has been written, which the Level 2 managers feel accurately reflects the length of time it will take to build the detector.
- Explicit contingency tasks have then been included in this base schedule.
- Base end date is 31 May, 2006
 - This contains 39 weeks of schedule contingency (~30%).
Installation

- The project does not include installation of the detector components in its scope.
 - Project completion is decoupled from Tevatron operations.
 - In this strategy, project completion can be independent of Run IIa operations.
- However, we will manage the installation activities.
 - Resource loaded schedule will be maintained for it.
- We currently plan a 34 week shutdown for the silicon replacement.
 - Installations for preshower and the various cabling tasks occur within that period.
Installation Milestones

<table>
<thead>
<tr>
<th>Task</th>
<th>Date Completed</th>
<th>Lead/Lag (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop Interlocks, Access to Collision Hall</td>
<td>4/12/2006</td>
<td>-7</td>
</tr>
<tr>
<td>Central Detector Ready to Roll Out</td>
<td>5/17/2006</td>
<td>-2</td>
</tr>
<tr>
<td>Install Silicon Interlock Hardware</td>
<td>5/10/2006</td>
<td>-3</td>
</tr>
<tr>
<td>Silicon Detector Required at Si. Facility</td>
<td>5/31/2006</td>
<td>-</td>
</tr>
<tr>
<td>Silicon Detector Ready for Installation</td>
<td>7/26/2006</td>
<td>8</td>
</tr>
<tr>
<td>Central Detector Ready to Roll In</td>
<td>8/16/2006</td>
<td>11</td>
</tr>
<tr>
<td>Central Detector Moved</td>
<td>8/23/2006</td>
<td>12</td>
</tr>
<tr>
<td>Silicon Ready for Power</td>
<td>9/6/2006</td>
<td>14</td>
</tr>
<tr>
<td>Ready for Collisions</td>
<td>11/29/2006</td>
<td>26</td>
</tr>
</tbody>
</table>
Foreign Contributions

- Japan
 - Sensors and analog cables for silicon layer 0
 - Phototubes and bases for the calorimeter
- Italy
 - Chip engineering, power supplies for silicon
 - ASDs, fibers, scintillator for calorimeter
- Taiwan
 - SVX4 chip manufacture
- Discussion are underway with Korea and Canada for contributions to silicon.
Funding Required

<table>
<thead>
<tr>
<th>Cost (AY $K)</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>$</td>
<td>$</td>
<td>$2,865</td>
<td>$7,226</td>
<td>$7,165</td>
<td>$877</td>
</tr>
<tr>
<td>Calorimeter</td>
<td>$</td>
<td>$</td>
<td>$785</td>
<td>$521</td>
<td>$16</td>
<td>-</td>
</tr>
<tr>
<td>DAQ/Trigger</td>
<td>$</td>
<td>$</td>
<td>$749</td>
<td>$1,407</td>
<td>$3,635</td>
<td>-</td>
</tr>
<tr>
<td>Administration</td>
<td>$</td>
<td>$</td>
<td>$420</td>
<td>$505</td>
<td>$516</td>
<td>$236</td>
</tr>
<tr>
<td>Total Equ. Cost</td>
<td>$</td>
<td>$</td>
<td>$4,818</td>
<td>$9,659</td>
<td>$11,333</td>
<td>$1,113</td>
</tr>
<tr>
<td>R&D Cost</td>
<td>$1,802</td>
<td>$1,477</td>
<td>$182</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$1,802</td>
<td>$6,295</td>
<td>$9,841</td>
<td>$11,333</td>
<td>$1,113</td>
<td>$30,383</td>
</tr>
</tbody>
</table>

Funding (AY $K)

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE - Equip. To</td>
<td>$3,500</td>
<td>$3,469</td>
<td>$8,396</td>
<td>$8,509</td>
<td>$1,113</td>
<td>$24,987</td>
</tr>
<tr>
<td>DOE - R&D</td>
<td>$1,670</td>
<td>$480</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$2,150</td>
</tr>
<tr>
<td>Japan</td>
<td>$235</td>
<td>$867</td>
<td>$1,081</td>
<td>$10</td>
<td>-</td>
<td>$2,193</td>
</tr>
<tr>
<td>Italy</td>
<td>$65</td>
<td>$351</td>
<td>$261</td>
<td>-</td>
<td>-</td>
<td>$676</td>
</tr>
<tr>
<td>University base</td>
<td>$24</td>
<td>$225</td>
<td>$103</td>
<td>$26</td>
<td>-</td>
<td>$377</td>
</tr>
<tr>
<td>Total Funding</td>
<td>$5,494</td>
<td>$5,392</td>
<td>$9,841</td>
<td>$8,544</td>
<td>$1,113</td>
<td>$30,383</td>
</tr>
</tbody>
</table>

- Costs include G&A and Contingency
- All costs/funds are in AY $K
Project Status

- In addition to the PAC, the CDF Run Ilb Detector Upgrade Project has been reviewed by:
 - Director’s Cost and Schedule Review – Apr. and Aug, 2002 (E. Temple)
 - Baseline Readiness Review – Sep., 2002 (D. Lehman)
 - External Independent Review – Nov., 2002 (Jupiter Corp.)

- Critical Decisions 1, 2, and 3a were granted in Dec, 2002 by the Office of Science
 - Completed by AEP signoff in Feb, 2003
Project Status

- CD-3a allows us to spend equipment money for project construction through FY 2003.
- Several significant procurements have been placed, or are close
 - Second SVX4 readout chip submitted
 - Silicon Sensors for the outer layers
 - Preproduction Hybrids for the outer layers
 - First batch of photomultipliers for the preshower detector
- The project is moving ahead with construction.
We have developed a well focused program to upgrade CDF for the Run IIb era. This project will maintain the high P_T physics program, and enable CDF to continue as a Higgs search experiment until the LHC era begins. The project has been extensively reviewed. The technical choices, cost, and schedule have been endorsed by a variety of reviewers. Construction has begun.