Role of Charged Lepton Flavor Violation in Differentiating Viable Neutrino Models

Carl H. Albright
Northern Illinois U. & Fermilab

Work in collaboration with Mu-Chun Chen
Paper in preparation

Muon Chapter, Project X Workshop
Fermilab, January 25, 2008
Present Oscillation Data and Unknowns

• Present data within 2σ accuracy

\[
\Delta m_{21}^2 = (7.3 - 8.5) \times 10^{-5} \text{ eV}^2
\]
\[
\Delta m_{31}^2 = (2.2 - 3.0) \times 10^{-3} \text{ eV}^2
\]
\[
\sin^2 \theta_{12} = 0.26 - 0.36
\]
\[
\sin^2 \theta_{23} = 0.38 - 0.63
\]
\[
\sin^2 \theta_{13} \leq 0.025
\]

• Data suggests the approximate tri-bimaximal mixing texture of Harrison, Perkins and Scott:

\[
U_{PMNS} = \begin{pmatrix}
2/\sqrt{6} & 1/\sqrt{3} & 0 \\
-1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\
-1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}
\end{pmatrix}
\]

with $\sin^2 \theta_{23} = 0.5$, $\sin^2 \theta_{12} = 0.33$ and $\sin^2 \theta_{13} = 0$.
• **Present unknowns**

 Hierarchy and absolute mass scales
 Whether neutrinos are Dirac or Majorana
 CP-violating phases of mixing matrix
 How close to zero is the reactor angle θ_{13}?
 How near maximal is the atmospheric mixing angle?
 Is the approximate tri-bimaximal symmetry a softly-broken or accidental symmetry?
 How large is charged lepton flavor violation?

• **Scope of Survey**

 What do models say about θ_{13}, hierarchy, and lepton flavor violation?
Models with Well-Defined Symmetry

• **Examples with Lepton Flavor Symmetry**
 - $\mu - \tau$ Interchange Symmetry
 - More restrictive S_3 or A_4 lepton flavor symmetry
 - SO(3) or SU(3) Flavor Symmetries
 - Texture Zeros

• **Examples involving GUT Models**
 - “Minimal” SO(10) Models with Higgs in 10, 126, (120, 45, 54)
 - “Lopsided” SO(10) Models with Higgs in 10, 16, 16(bar), 45
Survey of Predictions for θ_{13} and Hierarchy

- Survey made of 63 models in literature which give the LMA solution for the solar neutrino oscillations and firm and reasonably restrictive predictions for the reactor neutrino angle. (Cutoff date: May 2006)

- Most of models predict $10^{-4} < \sin^2 \theta_{13} < 0.04$

- Normal hierarchy is preferred 3 : 1

- Planned reactor experiments will reach $\sin^2 2\theta_{13} \sim 0.01$, so half of models will be eliminated if no $\bar{\nu}_e$ disappearance.

- Meanwhile MEG will probe $\mu \rightarrow e\gamma$ for LFV, so this may this may serve as even more immediate selector of models.
Lepton Flavor Violation in Radiative Decays

• In SM with 3 massive N^c's, individual L_e, L_μ, L_τ are not conserved. LFV arises in 1-loop where the neutrino insertion involves lepton flavor-changing Yukawa couplings.

$$BR_{21} \equiv \frac{\Gamma(\mu \rightarrow e\gamma)}{\Gamma(\mu \rightarrow \nu_\mu e\bar{\nu}_e)} = \frac{3\alpha}{32\pi} \left| \sum U_{\mu k}^* \frac{m_k^2}{M_W^2} U_{ke} \right|^2 \sim \frac{3\alpha}{128\pi} \left(\frac{\Delta m_{21}^2}{M_W^2} \right)^2 \sin^2 2\theta_{12} \sim 10^{-54}$$

Carl H. Albright Project X Workshop January 25, 2008 7
• In SUSY GUT models slepton - neutralino and sneutrino -
chargino loops contribute to radiative lepton decays.

• In the CMSSM version with universal soft masses and
trilinear couplings, LFV arises from evolution of Yukawa
couplings and soft parameters.

• With more comparable heavy masses in the loops and no
GIM mechanism, the LFV branching ratios can be much larger.
• In the LLA, largest contribution comes from the LL slepton mass matrix yielding

$$\text{BR}(\ell_j \rightarrow \ell_i \gamma) = \frac{\alpha^3}{G_F^2 m^8_S} |(m^2_{\tilde{\ell}})_{ji}|^2 \tan^2 \beta$$

where

$$(m^2_{\tilde{\ell}})_{ji} = -\frac{1}{8\pi^2} m_0^2 (3 + A_0^2/m_0^2) Y_{jk}^\dagger \log \frac{M_G}{M_k} Y_{ki}$$

• Full evolution effects are extremely well approximated by

$$m^8_S \simeq 0.5 m_0^2 M_{1/2}^2 (m_0^2 + 0.6 M_{1/2}^2)^2$$ \hspace{1cm} \text{Petcov et al.}$$

• MEG experiment only has a chance of seeing a positive signal from a SUSY GUT model. All other models considered here will give negative results.
Examples of Predictive SUSY GUT Models

- LFV has been studied in a number of papers in rather generic GUT models. Here we wish to differentiate between specific GUT models and draw some conclusions.

- SO(10) Models with indicated Flavor Symmetry and Higgs IRs
 1. AB (Albright-Barr): \(U(1) \times Z_2 \times Z_2 \) with \(10, 16, \bar{16}, 45 \)
 2. CM (Chen - Mahanthappa): \(SU(2) \times (Z_2)^3 \) with \(10, \bar{126} \)
 3. CY (Cai - Yu): \(S_4 \) with \(10, \bar{126} \)
 4. DR (Dermisek - Raby): \(D_3 \) with \(10, 45 \)
 5. GK (Grimus - Kuhbloc): \(Z_2 \) with \(10, 120, \bar{126} \)
<table>
<thead>
<tr>
<th>Models</th>
<th>SO(10) IRs</th>
<th>Flavor Symmetry</th>
<th>M_R’s</th>
<th>$\tan\beta$</th>
<th>$\sin^2\theta_{13}$</th>
<th>Interesting Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - B</td>
<td>$10, 16, \bar{16}, 45$</td>
<td>$U(1) \times Z_2 \times Z_2$</td>
<td>2.4×10^{14}</td>
<td>5</td>
<td>0.0020</td>
<td>Large M_R hierarchy with lightest two nearly degenerate leads to resonant leptogenesis.</td>
</tr>
<tr>
<td>C - M</td>
<td>$10, \bar{126}$</td>
<td>$SU(2) \times (Z_2)^3$</td>
<td>7.0×10^{12}</td>
<td>10</td>
<td>0.013</td>
<td>Large M_R hierarchy with heaviest more than 3 orders of magnitude below GUT scale; large $\sin^2\theta_{13}$.</td>
</tr>
<tr>
<td>C - Y</td>
<td>$10, \bar{126}$</td>
<td>S_4</td>
<td>2.6×10^{12}</td>
<td>10</td>
<td>0.0029</td>
<td>Degenerate M_R spectrum 4 orders of magnitude below GUT scale.</td>
</tr>
<tr>
<td>D - R</td>
<td>$10, 45$</td>
<td>D_3</td>
<td>5.5×10^{13}</td>
<td>50</td>
<td>0.0024</td>
<td>Mild M_R hierarchy almost 3 orders of magnitude below GUT scale.</td>
</tr>
<tr>
<td>G - K</td>
<td>$10, 120, \bar{126}$</td>
<td>Z_2</td>
<td>2.0×10^{15}</td>
<td>10</td>
<td>0.00059</td>
<td>Mild M_R hierarchy just 1 order of magnitude below GUT scale; rather small $\sin^2\theta_{13}$.</td>
</tr>
</tbody>
</table>
Radiative Lepton Flavor Violation Predictions

• In CMSSM with universal soft parameters m_0, $M_{1/2}$, A_0, for given $\tan \beta$ and $\text{sgn}(\mu)$, a variety of plots are possible.

1) BR vs. $M_{1/2}$ for fixed $A_0 = 0$ and different choices of m_0.

2) A_0/m_0 vs. $M_{1/2}$ scatterplot with a color scheme to indicate branching ratio ranges.

3) Ratio of the branching ratios, BR_{32}/BR_{21} on log - log plot:

$$\log BR_{32} = \log BR_{21} + \log \left| \frac{(Y_{\nu}^+LY_{\nu})_{32}}{(Y_{\nu}^+LY_{\nu})_{21}} \right|^2$$

with unit slope and intercept the second term on right. Length of straight line depends on the soft parameters.
• Soft Parameter constraints imposed

For $\tan \beta = 5, 10$:

$m_0 : \quad 50 \rightarrow 400$ GeV

$M_{1/2} : \quad 200 \rightarrow 1000$ GeV

$A_0 : \quad -4000 \rightarrow 4000$ GeV

For $\tan \beta = 50$:

$m_0 : \quad 500 \rightarrow 4000$ GeV

$M_{1/2} : \quad 200 \rightarrow 1500$ GeV

$A_0 : \quad -50 \rightarrow 50$ TeV

• WMAP DM constraints in coannihilation regions

\[
m_0 = c_0 + c_1 M_{1/2} + c_2 M_{1/2}^2
\]
\[
c_i = c_i(A_0, \tan \beta) \quad \text{Stark, Hafliger, Biland, Pauss}
\]

If $M_{1/2}$ is too small, $m_h > 114$ GeV is violated.

If $M_{1/2}$ is too large, $\tilde{\chi}^0$ relic density is too large.
BR(\mu \rightarrow e + \gamma)

BR(\tau \rightarrow \mu + \gamma)

AB model \quad (A_0 = 0)

CM model

CY model

DR model

GK model

10^{-19} 10^{-18} 10^{-17} 10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8}

10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0}
(A_0 = 0)
Lepton Flavor Violation in $\mu \rightarrow e$ Conversion

- One-loop diagrams involving gamma, Z, Higgs penguins and boxes all contribute, but in the CMSSM the gamma penguin dominates:

\[\mu^- \rightarrow \tilde{\ell}^+ \tilde{\chi}^- \rightarrow e^- \gamma \]

where the effects of the virtual N^c and \tilde{N}^c with their Yukawa couplings appear in $\tilde{\ell}$ loops, eg.

- The $\mu \rightarrow e$ conversion rate (relative to the capture rate) on Ti vs. BR21($\mu \rightarrow e\gamma$) is plotted for the 5 GUT models, where the tighter WMAP DM constraints have been imposed.
BR(\mu \rightarrow e + \gamma)

AB model
CM model \quad (A_0 = 0)
CY model
DR model
GK model

RATIOmueconv21.agr
Conclusions

Tried to differentiate models based on neutrino mass hierarchy, $\sin^2 \theta_{13}$, and charged lepton flavor violation predictions.

- Study initially based on 60+ models in literature (< 6/06)
 - Normal hierarchy preferred 3 : 1
 - Double CHOOZ and Daya Bay reactors will be able to eliminate roughly half of the 63 neutrino models surveyed, if their sensitivity reaches $\sin^2 2\theta_{13} \simeq 0.01$ as planned.
 - Of the order of 5 models have similar values for $\sin^2 \theta_{13}$ in the interval 0.001 - 0.08.
 - If the MEG experiment sees positive signals for $\mu \rightarrow e\gamma$, all non-SUSY models or non-NP models will be ruled out.
• Study narrowed to 5 predictive SO(10) SUSY GUT models

- All 5 models have type I seesaws implying normal hierarchy.
- \(\sin^2 2\theta_{13} \) predictions:

 CM (~ 0.05); AB, CY, DR (~ 0.01); GK (~ 0.001)

- Previous studies of generic SO(10) models have concluded that the LFV branching ratios depend critically on \(\theta_{13} \) and \(M_{R3} \). Here we find that \(M_{R3} \) appears to be more important.

- Branching ratio plots given for \(A_0 = 0 \) represent lower limits with higher predictions obtained for \(|A_0/m_0| > 0 \).

- If the MEG experiment can reach an upper bound of \(\text{BR}(\mu \rightarrow e\gamma) < 10^{-13} \), it will rule out the GK and AB models.

- If \(\mu \rightarrow e \) conversion can be performed and reach a branching ratio limit of \(10^{-18} \) as originally anticipated, it can potentially rule out all 5 models considered.