The Detailed Baseline Design for the SiD Detector Concept

Andy White
University of Texas at Arlington
(presented by Marcel Stanitzki)

for the SiD Detector Concept
Outline

• Introduction
 – Detector design
 – Design Study Organization
 – DBD Editors

• Areas of SiD included in DBD
 – summary for detector components

• Simulation/reconstruction, PFA, Benchmarking
 – see next talk by Tim Barklow

• SiD Costing

• Summary

• This is a short talk about a large design study – summarize main features of SiD, current status, and a word about the future.
SiD Detector overview

- **SiD Rationale**
 - *A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena*

- **Design choices**
 - *Compact* design with 5 T field.
 - Robust all-silicon vertexing and tracking system with excellent momentum resolution.
 - Time-stamping for single bunch crossings.
 - Highly granular Calorimetry optimized for Particle Flow.
 - Iron flux return/muon identifier is part of the SiD self-shielding.
 - Detector is designed for rapid push-pull operation.
SiD Detailed Baseline Design

2003: SiD first appears at ALCPG. SiD is aimed at the NLC

2006: Detector Outline Document

2008/9: CLIC_SiD Starts for Multi-TeV machines

2009: SiD Letter Of Intent

2009: SiD validated

2011: CLIC Physics and Detectors Conceptual Design Report

2004: WWS starts the detector concept studies at the Victoria meeting: SiD, GLD, LDC
Beginning of the Silicon Detector Concept Study

2007: Detector Concept Report
First SiD workshop

Concept Phase

LoI Phase

DBD Phase

Marcel Stanitzki, LCWS 2012
Creating the SiD DBD

Main DBD Editors:
Phil Burrows (Oxford)
Lucie Linssen (CERN)
Mark Oreglia (UChicago)
Marcel Stanitzki (DESY)
Andy White (UTA)
• The DBD is a detailed description of a detector design concept, with examples of performance for selected ILC physics processes.

• The DBD is not at the level of a TDR
 - only limited engineering effort was available.

• It includes a large R&D effort, but this is not yet complete.

• Baseline choices have been made for all subsystems except the vertex detector; options are also included.

• We provide a full cost evaluation for the detector.
The SiD DBD Detector
The SiD DBD Detector
The SiD DBD Detector - parameters

<table>
<thead>
<tr>
<th>SiD BARREL</th>
<th>Technology</th>
<th>Inner radius</th>
<th>Outer radius</th>
<th>z max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex detector</td>
<td>Silicon pixels</td>
<td>1.4</td>
<td>6.0</td>
<td>± 6.25</td>
</tr>
<tr>
<td>Tracker</td>
<td>Silicon strips</td>
<td>21.7</td>
<td>122.1</td>
<td>± 152.2</td>
</tr>
<tr>
<td>ECAL</td>
<td>Silicon pixels-W</td>
<td>126.5</td>
<td>140.9</td>
<td>± 176.5</td>
</tr>
<tr>
<td>HCAL</td>
<td>RPC-steel</td>
<td>141.7</td>
<td>249.3</td>
<td>± 301.8</td>
</tr>
<tr>
<td>Solenoid</td>
<td>5 Tesla</td>
<td>259.1</td>
<td>339.2</td>
<td>± 298.3</td>
</tr>
<tr>
<td>Flux return</td>
<td>Scintillator/steel</td>
<td>340.2</td>
<td>604.2</td>
<td>± 303.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SiD ENDCAP</th>
<th>Technology</th>
<th>Inner z</th>
<th>Outer z</th>
<th>Outer radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex detector</td>
<td>Silicon pixels</td>
<td>7.3</td>
<td>83.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Tracker</td>
<td>Silicon strips</td>
<td>77.0</td>
<td>164.3</td>
<td>125.5</td>
</tr>
<tr>
<td>ECAL</td>
<td>Silicon pixel-W</td>
<td>165.7</td>
<td>180.0</td>
<td>125.0</td>
</tr>
<tr>
<td>HCAL</td>
<td>RPC-steel</td>
<td>180.5</td>
<td>302.8</td>
<td>140.2</td>
</tr>
<tr>
<td>Flux return</td>
<td>Scintillator/steel</td>
<td>303.3</td>
<td>567.3</td>
<td>604.2</td>
</tr>
<tr>
<td>LumiCal</td>
<td>Silicon-W</td>
<td>155.7</td>
<td>170.0</td>
<td>20.0</td>
</tr>
<tr>
<td>BeamCal</td>
<td>Semiconductor-W</td>
<td>277.5</td>
<td>300.7</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Vertex Detector

- **Requirements**
 - < 5 µm hit resolution
 - ~ 0.1 % X_0 per layer
 - < 130 µW/mm²
 - Single bunch timing resolution

- ILC bunch timing and low radiation environment allows very light, low power vertex system
- Pulsed power/DC-DC conversion
- Forced dry air cooling
No preferred technology – many choices/still an evolving picture

Example 3-D/active edge design:

Barrel
Readout and power connections on top layer

Disk tiling
VIP 2a – 3 tier MIT-LL

VIP 3D chip

VIP

• VIP2a (3-tier MIT-LL chip) is produced and tested
• Both analog and digital sections work well, solving problems found in VIP1
• VIP2b (2-Tier Tezzaron/Global foundries) is in process.
• Initial tests of 2D test devices shows good analog performance.
noise = 8e + 0.5 e/ff
• Sensors for 3D integration of VIP2b produced and tested.

Chronopixel

• Measured noise of 24 e, specification is 25 e.
• Sensitivity measured to be 35.7 μV/e, exceeding design spec of 10 μV/e.
• Comparator accuracy 3 times worse then spec, need to improve this in prototype 2.
• Sensors leakage currents (1.8·10^-8 A/cm²) is not a problem.
• Readout time satisfactory
• Prototype 2 late 2011, 65nm TSMC

Next: Full sized ladder for barrel, wedge segment for disks, support structures, cooling. power pulsing, cabling.
ILC Physics requires:
- excellent momentum resolution over wide P_T range
- high point precision, mechanical stability for high P_T
- low material budget for low P_T
- high efficiency for all momenta/angles

-> Performance goals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>coverage</td>
<td>hermetic above $\theta \sim 10^\circ$</td>
</tr>
<tr>
<td>momentum resolution $\delta(1/p_T)$</td>
<td>$\sim 2 - 5 \times 10^{-5}/GeV/c$</td>
</tr>
<tr>
<td>material budget</td>
<td>$\sim 0.10 - 0.15X_0$ in central region</td>
</tr>
<tr>
<td></td>
<td>$\sim 0.20 - 0.25X_0$ in endcap region</td>
</tr>
<tr>
<td>hit efficiency</td>
<td>$> 99%$</td>
</tr>
<tr>
<td>background tolerance</td>
<td>Full efficiency at $10 \times$ expected occupancy</td>
</tr>
</tbody>
</table>

12/14/2012 SiD DBD ILC PAC 14
Silicon Tracking

Below 20% X_0 for whole VTX/TRK system
Silicon Tracking

Design features:
- Single-sided silicon micro-strips, double metal layer
- KPiX readout, with time stamping
- Gas cooling
- DC-DC converters supply high instantaneous current

Realization:

Barrel silicon module
300 µm Si, 25(50) µm sense(readout) pitch

Barrel sensor with prototype pigtail cable.
Silicon Tracking

Performance - efficiency

Single muons

Di-jet Z'
$(M = 1$ Tev$/$c$^2)$
Silicon Tracking

Performance

Momentum resolution

Impact parameter
Tracker Alignment

SiD Alignment is based on:

1. Small number of robust, rigid elements
 - Minimize deviations
2. Precise positioning of smaller components during fabrication and assembly
 - Achieving ~ 20 μm (or better) precision
3. Real-time monitoring of alignment changes, including during push-pull moves
 - Using FSI, laser-tracks, and strain measurements using fibers
 - Building on ATLAS, CMS and AMS experiences
4. Track-based alignment for final precision
 - For each data-taking period
 - Overall accuracy ~ 3 μm (Tracker) / ~ 1 μm (Vertex)
SiD Calorimetry is designed for the PFA approach:
- ECAL and HCAL must be “imaging”: high granularity
- Small Moliere radius for ECAL – separate e^-/charged h
- Minimize gap between tracker and ECAL
- Sufficient overall depth

- **SiD ECAL**
 - Tungsten absorber
 - 20+10 layers
 - $20 \times 0.64 + 10 \times 1.30 \times X_0$

- **Baseline Readout using**
 - 5x5 mm2 silicon pads

- **SiD HCAL**
 - Steel Absorber
 - 40 layers
 - $4.5 \lambda_i$

- **Baseline readout**
 - 1x1 cm2 RPCs
All other options (except a scintillator ECAL) are being considered.
Electromagnetic Calorimetry
Electromagnetic Calorimetry

Option: Monolithic Active Pixels (MAPS)
50µm x 50µm pixels

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel size</td>
<td>13 mm²</td>
</tr>
<tr>
<td>readout gap</td>
<td>1.25 mm</td>
</tr>
<tr>
<td>effective Molière radius (incl. 0.32 mm thick Si sensors)</td>
<td>14 mm</td>
</tr>
<tr>
<td>pixels per silicon sensor channels per KPiX chip</td>
<td>1024</td>
</tr>
<tr>
<td>dynamic range requirement</td>
<td>~ 0.1 to 2500 MIPs</td>
</tr>
<tr>
<td>heat load requirement</td>
<td>20 mW per sensor</td>
</tr>
</tbody>
</table>
Hadronic Calorimetry

Steel absorber
40-layers, 4.5 λ_I
Tracking calorimeter
RPC Baseline. 1x1 cm2 cells
Hadronic Calorimetry

Baseline: RPC DHCAL

- 2-glass design can operate at good efficiency and low multiplicity
- 1-glass design has flat multiplicity vs. efficiency - still being understood/under development)
Hadronic Calorimetry

Baseline: RPC DHCAL

Test beam with 1 m³ stack
Largest Calorimeter by channel count

8 GeV pion shower
120 GeV proton shower.
Hadronic Calorimetry

Baseline: RPC DHCAL

- The RPC technology is a great candidate for the readout of a highly segmented calorimeter.
- The dark rate in the DHCAL is very low
- The response is linear up to about 30 GeV/c.
Hadronic Calorimetry

Options: GEM, Micromegas, Scintillator

GEM

Micromegas

Scintillator
Muon System

- Muon identification/hadron rejection
- Flux return
- Tail catcher for calorimeter system
- Low rates/large area

Pion misidentification
10 layers
Muon System

Major change of baseline vs. LOI:
Scintillating strips/wavelength shifting fibers

(RPC remains as an option)

Development of system to position SiPM at the end of a fiber
Magnet System

- 5 T design based on 4 T CMS solenoid
- Muon system flux return

 - ANSYS 2-D and 3-D models used in design work
 - Benefitted from cryo engineering at SLAC and BNL and advances in computation
Electronics and DAQ - Rates

- SiD Electronics and DAQ built around KPiX approach → Maximize common components

<table>
<thead>
<tr>
<th></th>
<th>cell size (mm2)</th>
<th>number of channels (10^6)</th>
<th>av. to max. occ. (%)</th>
<th>approx. # bits per hit (bit)</th>
<th>data volume (Mbyte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTX barrel</td>
<td>0.02 x 0.02</td>
<td>408</td>
<td>50 - 60</td>
<td>32</td>
<td>1600</td>
</tr>
<tr>
<td>VTX disks inner</td>
<td>0.02 x 0.02</td>
<td>295</td>
<td>4 - 70</td>
<td>32</td>
<td>100</td>
</tr>
<tr>
<td>VTX disks outer</td>
<td>0.05 x 0.03</td>
<td>980</td>
<td>0.5 - 20</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>TRACKER barrel</td>
<td>0.05 x 100</td>
<td>16</td>
<td>12 - 300</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>TRACKER disks</td>
<td>0.05 x 100</td>
<td>22</td>
<td>4 - 500</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>ECAL barrel</td>
<td>3.5 x 3.5</td>
<td>72</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>ECAL endcap</td>
<td>3.5 x 3.5</td>
<td>22</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>HCAL barrel</td>
<td>10 x 10</td>
<td>30</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>HCAL endcap</td>
<td>10 x 10</td>
<td>5</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>LumiCal</td>
<td>2.5 x var.</td>
<td>0.061</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>BeamCal</td>
<td>2.5(5.0) x var.</td>
<td>0.076</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>MUON barrel</td>
<td>41 x var.</td>
<td>0.026</td>
<td>-</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>MUON endcap</td>
<td>41 x var.</td>
<td>0.022</td>
<td>-</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
Detector Integration and MDI

3 m thick concrete push-pull platform:
- 30 m travel for detector swap
- ~1 mm max static deflection at detector support points

IR Hall configuration (vertical access)
Detector Assembly - examples

Assembly beam

Assembly Spider

Insertion beam

Truck with HCAL Module

Assembling the Hadron Calorimeter

Horizontal access – moving the solenoid
Beampipe/Forward Region
Beampipe/Forward Region

LumiCal - integrated luminosity and luminosity spectrum

BeamCal – small angle coverage (with LumiCal), instantaneous luminosity

Dedicated ASIC (Bean chip) for high luminosity region
SiD Costs

- Costing is based on SiD **Parametric Model**
- Basic items have agreed cost (SiD, ILD and CLIC):

<table>
<thead>
<tr>
<th>Material</th>
<th>agreed unit cost (US-$)</th>
<th>agreed error margin (US-$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten for HCAL</td>
<td>105/kg</td>
<td>45/kg</td>
</tr>
<tr>
<td>Tungsten for ECAL</td>
<td>180/kg</td>
<td>75/kg</td>
</tr>
<tr>
<td>Steel for Yoke</td>
<td>1000/t</td>
<td>300/t</td>
</tr>
<tr>
<td>Stainless Steel for HCAL</td>
<td>4500/t</td>
<td>1000/t</td>
</tr>
<tr>
<td>Silicon Detector</td>
<td>6/cm^2</td>
<td>2/cm^2</td>
</tr>
</tbody>
</table>

- Costs in 2008 U.S. $

 - M&S 315 $M
 - Contingency 127 $M
 - Labor 748 $M

- Model allows exploration of sensitivity to cost increase and detector parameter changes
Note: For the LOI an optimal cost region was found near the baseline parameters:

\[R_{\text{tracker}} = 1.25 \text{ m}, \quad B = 5 \text{ T}, \quad \text{HCAL } \lambda_l = 4.5 \]

Cost of Tungsten HCAL has been evaluated (requested by IDAG)

No potential savings
SiD Production Status

• 3000 CPU days and 79000 Jobs
• 89 % Efficiency (Jobs successful)
SiD DBD Summary and Beyond

- We have presented a detailed design for a detector capable of high precision physics studies and discoveries at the ILC.

- Our technology choices are based on the currently available R&D results from SiD, CALICE, FCAL and other sources.

- We will continue to study/develop the SiD concept and pursue additional physics studies.

- As the ILC moves towards realization, we will expand SiD globally and work energetically with the new Linear Collider Organization to promote the ILC project

SiD研究グループは、日本でDBDを紹介する機会を与えてもらえましたことを大変光栄に思います。
This will be a critical meeting as we move forward from the DBD towards the next phase of the realization of the ILC and the SiD detector concept.
Extra slides
SiD Elements, Masses and Sizes

<table>
<thead>
<tr>
<th>Name</th>
<th>Mass (10^3 kg)</th>
<th># Subcomponents</th>
<th>Mass (10^3 kg)</th>
<th>Size (m×m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel</td>
<td>4220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAL</td>
<td>60</td>
<td>12</td>
<td>5.0</td>
<td>2.8 × 3.5</td>
</tr>
<tr>
<td>HCAL</td>
<td>367</td>
<td>12</td>
<td>31.7</td>
<td>5 × 5.9</td>
</tr>
<tr>
<td>Tracker</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2.5 × 3.3</td>
</tr>
<tr>
<td>Coil</td>
<td>180</td>
<td>2</td>
<td>90</td>
<td>6.8 × 5.9</td>
</tr>
<tr>
<td>Magnet Yoke</td>
<td>3360</td>
<td>8</td>
<td>420</td>
<td>12 × 5.9</td>
</tr>
<tr>
<td>Yoke Arch Supports</td>
<td>150</td>
<td>2</td>
<td>75</td>
<td>12 × 1</td>
</tr>
<tr>
<td>Peripherals</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each of Two Endcaps</td>
<td>2450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECAL</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>0.15 × 2.5</td>
</tr>
<tr>
<td>HCAL</td>
<td>23</td>
<td>1</td>
<td>23</td>
<td>1.2 × 2.8</td>
</tr>
<tr>
<td>Muon System</td>
<td>30</td>
<td></td>
<td></td>
<td>2.6 × 12</td>
</tr>
<tr>
<td>MDI Components</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endcap Steel Plates</td>
<td>2200</td>
<td>11</td>
<td>200</td>
<td>0.2 × 12</td>
</tr>
<tr>
<td>Endcap Leg Supports</td>
<td>140</td>
<td>2</td>
<td>70</td>
<td>2.6 × 6</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SiD Push-Pull detector exchange

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure ILC Beams</td>
<td>1 hr</td>
</tr>
<tr>
<td>De-energize magnets</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Open Beamline Shielding</td>
<td>1 hr</td>
</tr>
<tr>
<td>Disconnect Beamlines</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Checkout Detector Transport system</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Transport Detector 20 m</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Transport other detector on beamline</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Connect beamline</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Close Beamline shielding</td>
<td>1 hr</td>
</tr>
<tr>
<td>Check gross detector alignment & adjust if necessary</td>
<td>2 hrs</td>
</tr>
<tr>
<td>Energize magnets</td>
<td>3 hrs</td>
</tr>
<tr>
<td>Safety Checks before beams</td>
<td>1 hr</td>
</tr>
<tr>
<td>Begin Beam Based alignment</td>
<td>10 hrs</td>
</tr>
</tbody>
</table>

1 day
Muon System

Barrel - two orthogonal planes of strips

Endcaps – modules slide between spacers/steel layers
Electronics and DAQ

SLAC development of ATCA-based systems

KPiX schematic

Versions of KPiX will be used for all subsystems except VTX and the high occupancy forward regions.