MiniBooNE
Steve Brice
Fermilab

- Oscillation Analysis
- Issues of the Past Year
 - Normalization
 - Optical Model
 - π^0 MisIDs
- Summary
- Future
MiniBooNE Goal

- Search for ν_e appearance in a ν_μ beam at the ~0.3% level
 - $L=540$ m ~10x LSND
 - $E\sim500$ MeV ~10x LSND
Particle ID

- Identify electrons (and thus candidate ν_e events) from characteristic hit topology
- Non-neutrino background easily removed

DOE Review 17 May 2006
Particle ID

- To achieve good sensitivity the Particle ID must
 - Eliminate ~99.9% of all ν_μ CC interactions
 - Eliminate ~99% of all NC π^0 producing interactions
 - Maintain good (~30-60%) efficiency for ν_e interactions

- It achieves these goals

- Exploring parallel, complementary approaches
 - “Simple” cuts: easy to understand
 - Boosted decision trees: maximize sensitivity
Backgrounds

• Makeup of the backgrounds is different for the two particle ID approaches
 - Different balance between intrinsic ν_e and misIDed ν_μ
 - Important check that backgrounds are understood
• Backgrounds are determined from our own data using
 - ν_μ CCQE events for intrinsic ν_e from μ^+
 - Single π^0 events for π^0 misID
 - High energy ν_e events for intrinsic ν_e from K^+
Determining Backgrounds with MiniBooNE Data

- Example oscillation signal
 - $\Delta m^2 = 1 \, \text{eV}^2$
 - $\sin^2 2\theta = 0.004$
- Fit for excess as a function of reconstructed ν_e energy

Full data sample $\sim 5.3 \times 10^{20}$ POT
Determining Backgrounds with MiniBooNE Data

MisID ν_μ
- of these......
- $\sim 83\% \pi^0$
 - Only $\sim 1\%$ of π^0s are misIDed
 - Determined by clean π^0 measurement
- $\sim 7\% \Delta \gamma$ decay
 - Use clean π^0 measurement to estimate Δ production
- $\sim 10\%$ other
 - Use ν_μ CCQE rate to normalize and MC for shape

Full data sample $\sim 5.3 \times 10^{20}$ POT
Determining Backgrounds with MiniBooNE Data

Full data sample $\sim 5.3 \times 10^{20}$ POT

ν_e from μ^+

- Measured with ν_μ CCQE sample
 - Same parent π^+ kinematics
- Most important background
- Very highly constrained (a few percent)
Determining Backgrounds with MiniBooNE Data

Full data sample ~5.3×10^{20} POT

- Use high energy ν_e and ν_μ to normalize
- Use kaon production data for shape
- Need to subtract off misIDs
Determining Backgrounds with MiniBooNE Data

Full data sample \(\sim 5.3 \times 10^{20} \) POT

High energy \(\nu_e \) data
- Events below \(\sim 1.5 \) GeV still in closed box (blind analysis)
Issues Of the Past Year

• Most of the analysis effort over the last year has gone into
 - Normalization
 - Optical Model
 - π^0 MisIDs

• Each is a significant hurdle that has been overcome
Issues of the Past Year: Normalization

- The MiniBooNE Run Plan reported we were seeing \(\sim 1.5 \) times as many events as the Monte Carlo predicted
 - For an inclusive \(\nu \) event sample
- This normalization difference is now \(\sim 1.2 \)
- Major changes in rate prediction since Run Plan (not complete list) ...
 - 3.5% from better \(\nu \) cross-section modeling
 - +17.5% from better modeling of incoming proton beam
 - +5.2% from CCQE cross-section tuning (\(M_A \) extraction)
 - -6.0% from better modeling of secondary beam interactions
 - +16.2% from HARP \(\pi^+ \) measurement + horn current + better modeling of primary proton interactions
- After a huge amount of cross-checking the agreement between data and \(MC \) \(\nu \) rates is now far less of an issue
Issues of the Past Year: Optical Model

- Two Key features of MiniBooNE
 - Trying to do very precise particle ID to identify a possible ∼0.3% signal
 - Several calibration sources, but none with the perfect properties (e.g. no 1 GeV electron gun)
- The approach must therefore be...
 - Use the available calibration sources (Michel electrons, laser, etc)
 - Have a very well tuned MC to extrapolate from what the calibration sources look like to what the signal and background look like
- Therefore...
 - Need an “optical model” that matches data very well
 - Optical Model = model for how light is created, propagated, and detected in MiniBooNE
Issues of the Past Year: Optical Model

- Stepwise approach to tuning the optical model

- External measurements & laser calibration
 - First calibration with michels
 - Calibration of scintillation light with NC events
 - Final calibration with michels
 - Validation with cosmic muons, ν_μ events, and NuMI ν_e events
Issues of the Past Year: Optical Model

- Many variables are potentially useful in analyses
- Optical Model improvement measured by data/MC agreement in these variables
- Huge gains in data/MC agreement
Issues of the Past Year: π^0 MisIDs

- About 83% of all MisID background comes from single π^0 events
- Use cleanly identified π^0s to measure the π^0 rate as a function of π^0 momentum

Need to get to high π^0 momentum to enable measurement of high energy ν_e background from K^+

Old π^0 reconstruction could not do this

Have developed a new π^0 fitter that can go to high momentum and has better π^0 efficiency and purity
Issues of the Past Year: π^0 MisIDs

New π^0 fitter can make π^0 yield measurements up to the ~1.5 GeV level needed to get at the ν_es from K^+

This is an ongoing analysis - not yet complete
Summary

• Over the past year the major hurdles have been crossed
 - Much more accurate prediction of rate - data/MC ~1.2
 - Optical Model probably now good enough (more checks needed)
 - Analysis for π^0 misID measurement largely in place

• Still a lot of work to do - but the way forward is clear
• On track for a result as soon as this summer
The Future

• Ran in anti-neutrino mode January 2006 to shutdown
 • Will continue in anti-neutrino mode after shutdown
 – First ever anti-neutrino measurements in this energy region

• SciBooNE experiment, at a near location in the beamline, will start in late 2006 (see SciBooNE talk)

• Possibility to build additional detectors closer or farther away (BooNE)
 – MiniBooNE clone or new technology (e.g. LAr)
 – MiniBooNE result will guide location
 • ~2km detector for low Δm^2
 • ~0.2km detector for high Δm^2
Backups
Neutrino Candidates

- DAQ triggered on beam from Booster
- ν pulse through detector lasts 1.6 μs
- By requiring tank activity and no veto activity the non-neutrino backgrounds become negligible
proton->Be collisions at 8.9 GeV/c

piplus cross section with full statistical plus systematic errors shown (except the 4% normalization error)

$0.75 < p_\pi < 6.5$ GeV/c

$30 < \theta_\pi < 210$ mrad

Momentum and angular distribution of pions decaying to a neutrino that passes through the MB detector.
Low Q^2 & MiniBooNE QE Model

- perform shape fit to MiniBooNE QE dN/dQ^2 (~60,000 QE events after cuts)

- fit for:
 - Fermi Gas model pars (E_B, p_F)
 - axial mass, M_A
 - and background fraction, B_F

- best shape fit yields “effective parameters”:
 - $M_A = 1.24$ GeV
 - $E_B = 34$ MeV
 - $p_F = 246$ MeV
 - $B_F = 0.7$ (J. Monroe)
Past ν Data

- not clear that past QE neutrino data necessarily rules out a larger value for M_A

- example: BNL bubble chamber data and $d\sigma/dQ^2$ predictions with different M_A assumptions
Checking Particle ID with NuMI Events

• Because of the off-axis angle, the beam at MiniBooNE from NuMI is significantly enhanced in ν_es from K^+
• Enables a powerful check on the Particle ID
And in the future...

MiniBoonE \(\nu \) results

- continued MB running:
 - BNB-line data
 - NuMI-line data

SciBooNE information

Improved MB signal:
oscillation or decay?

Follow-up Experiments

- BooNE (FNAL):
 - LS and LAr detectors under consideration
- SNS (see APS Neutrino Study)
- JPARC (now under study)

MiniBoonE \(\bar{\nu} \) running (requires \(\sim 3+ \) years for CP Violation)

- positive \(\nu \) result
- negative \(\nu \) result

signal in \(\bar{\nu} \)?

CP violation in...
oscillation?
decay?
... or something else?

Follow-ups under consideration