Press Room


MINOS photos for downloading

When publishing any of the photos on this page please credit them to Fermilab unless noted otherwise. Click on thumbnail photos for medium resolution images. Download high-resolution tiff or jpeg images by right clicking on the high-resolution image links.

Map The building blocks of matter include three types of neutrinos, known as electron neutrino, muon neutrino and tau neutrino. For more than a decade, physicists have seen evidence that these neutrinos can transform into each other.
Medium Resolution Image
Map The observation of electron neutrino-like events allows MINOS scientists to extract information about a quantity called sin213. If muon neutrinos donít transform into electron neutrinos, sin213 is zero. The new MINOS result constrains this quantity to a range between 0 and 0.12, improving on results it obtained with smaller data sets in 2009 and 2010. The MINOS range is consistent with the T2K range for sin213, which is between 0.03 and 0.28. According to the T2K data, the most likely value is 0.11. The MINOS result prefers a value of 0.04, and its data indicates that sin213 is non-zero at the 89% confidence level.
Medium Resolution Image
Map Neutrinos, ghost-like particles that rarely interact with matter, travel 450 miles straight through the earth from Fermilab to Soudan -- no tunnel needed. The Main Injector Neutrino Oscillation Search (MINOS) experiment studies a muon neutrino beam using two detectors. The MINOS near detector, located at Fermilab, records the composition of the neutrino beam as it leaves the Fermilab site. The MINOS far detector, located in Minnesota, half a mile underground, again analyzes the neutrino beam. This allows scientists to directly study the oscillation of muon neutrinos into electron neutrinos or tau neutrinos under laboratory conditions.
High Resolution Image
Sideview The MINOS far detector is located in a cavern half a mile underground in the Soudan Underground Laboratory, Minnesota. The 100-foot-long MINOS far detector consists of 486 massive octagonal planes, lined up like the slices of a loaf of bread. Each plane consists of a sheet of steel about 25 feet high and one inch thick, with the last one visible in the photo. The whole detector weighs 6,000 tons. Since March 2005, the far detector has recorded neutrinos from a beam produced at Fermilab. The MINOS collaboration records about 1,000 neutrinos per year. The MINOS collaboration records about 1,000 neutrinos per year. A tiny fraction of them seem to be electron neutrinos.
High Resolution Tif Image
Near Detector The 1,000-ton MINOS near detector sits 350 feet underground at Fermilab. The detector consists of 282 octagonal-shaped detector planes, each weighing more than a pickup truck. Scientists use the near detector to verify the intensity and purity of the muon neutrino beam leaving the Fermilab site. Photo: Peter Ginter.
High Resolution Tif Image
NuMI Tunnel Fermilab completed the construction and testing of the Neutrino at the Main Injector (NuMI) beam line in early 2005. Protons from Fermilab's Main Injector accelerator (left) travel 1,000 feet down the beam line, smash into a graphite target and create muon neutrinos. The neutrinos traverse the MINOS near detector, located at the far end of the NuMI complex, and travel straight through the earth to a former iron mine in Soudan, Minnesota, where they cross the MINOS far detector. Some of the neutrinos arrive as electron neutrinos or tau neutrinos.
High Resolution Image
Neutrino Horn When operating at highest intensity, the NuMI beam line transports a package of 35,000 billion protons every two seconds to a graphite target. The target converts the protons into bursts of particles with exotic names such as kaons and pions. Like a beam of light emerging from a flashlight, the particles form a wide cone when leaving the target. A set of two special lenses, called horns (photo), is the key instrument to focus the beam and send it in the right direction. The beam particles decay and produce muon neutrinos, which travel in the same direction. Photo: Peter Ginter.
High Resolution Tif Image
MINOS Collaboration More than 140 scientists, engineers, technical specialists and students from Brazil, Greece, Poland, the United Kingdom and the United States are involved in the MINOS experiment. This photo shows some of them posing for a group photo at Fermilab, with the 16-story Wilson Hall and the spiral-shaped MINOS service building in the background.
High Resolution Image
Far view The University of Minnesota Foundation commissioned a mural for the MINOS cavern at the Soudan Underground Laboratory, painted onto the rock wall, 59 feet wide by 25 feet high. The mural contains images of scientists such as Enrico Fermi and Wolfgang Pauli, Wilson Hall at Fermilab, George Shultz, a key figure in the history of Minnesota mining, and some surprises. A description of the mural, painted by Minneapolis artist Joe Giannetti, is available here.

High Resolution Tif Image

Return to Press Release


last modified 06/24/2011   email Fermilab