First CDF Run II Results
The CDF Collaboration

<table>
<thead>
<tr>
<th>Region</th>
<th>North America</th>
<th>Europe</th>
<th>Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 Natl. Labs</td>
<td>1 Research Lab</td>
<td>5 Universities</td>
</tr>
<tr>
<td></td>
<td>28 Universities</td>
<td>6 Universities</td>
<td>1 Research Lab</td>
</tr>
<tr>
<td></td>
<td>1 Universities</td>
<td>1 University</td>
<td>1 University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 Universities</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>12 countries</td>
<td>2 Research Labs</td>
<td>3 Universities</td>
</tr>
<tr>
<td></td>
<td>58 institutions</td>
<td>1 University</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 University</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 University</td>
<td></td>
</tr>
</tbody>
</table>

581 physicists

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-Pisa
First CDF Run II Results

Outline

- Status of the Tevatron
- Status of the CDF detector
- First results with Run II data
- Outlook and conclusions
Tevatron status

- Tevatron operations started in March 2001
 - Luminosity goals for run 2a:
 - 5×10^{31} cm$^{-2}$sec$^{-1}$ w/o Recycler
 - 2×10^{32} cm$^{-2}$sec$^{-1}$ with Recycler
 - Achieved:
 - 2.2×10^{31} cm$^{-2}$sec$^{-1}$ in July '02
 - Now recovered from June shutdown to improve p-bar cooling
 - 54 pb$^{-1}$ delivered until early June
 - 35 pb$^{-1}$ are on tape
 - 10 – 20 pb$^{-1}$ used for analyses shown at this conference (details)

ICHEP 2002, Amsterdam
F. Bedeschi, INFN
The Upgraded CDF Detector
The Upgraded CDF Detector

- Major qualitative improvements over Run 1 detector:
 - Whole detector can run up to 132 nsec interbunch
 - New full coverage 7-8 layer 3-D Si-tracking up to $|\eta| \sim 2$
 - New faster drift chamber with 96 layers
 - New TOF system
 - New plug calorimeter
 - New forward muon system
 - New track trigger at Level 1 (XFT)
 - New impact parameter trigger at Level 2 (SVT)

- All systems working well
 - Silicon and L2 took longer to commission
Detector Performance

- Silicon detectors:
 - Typical S/N ~12
 - Alignment in R-\(\phi\) good
 - R-z ongoing

\[\text{Details} \]
Detector Performance

- TOF resolution within 10 –20% of design value
 - Improving calibrations and corrections
Detector Performance

Efficiency curve:
XFT cut at
$P_T = 1.5 \text{ GeV/c}$

- $\Delta p_T / p_T^2 = 1.8\% \text{ (GeV}^{-1})$
- $\Delta \phi = 8 \text{ mrad}$

- XFT: L1 trigger on tracks
- full design resolution

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Detector Performance

8 VME crates
Find tracks in Si in 20 μs with offline accuracy

- **Secondary VerTex L2 trigger**
 - Online fit of primary Vtx
 - Beam tilt aligned
 - D resolution as planned
 - 48 μm (33 μm beam spot transverse size)

Online track impact param.

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Physics with CDF-II

- Use data to understand the new detector:
 - energy scales in calorimeter and tracking systems
 - detector calibrations and resolutions
 - tune Monte Carlo to data

- Use data to do **physics analyses**
 - Real measurement beyond PR plots
 - Quality of standard signatures
 - Rates of basic physics signals
 - Surprisingly some results are already of relevance in spite of the limited statistics

Several CDF presentations made in the parallel sessions
In the following brief/incomplete summary of a lot of work
EM Calorimeter scale

- **638 Z → e⁺e⁻ in 10 pb⁻¹**
 - \(\sigma(M) \sim 4 \text{ GeV} \) FB asymmetry

- **Check Z mass in data and simulation after corrections**
 - **Central region:**
 - Mean: +1.2\% data, -0.6\% sim.
 - Resolution: +2\% simulation
 - **Forward region (Plug):**
 - Mean: +10/6.6\% data, +2.0\% simulation
 - Resolution: +4\% simulation

\[N_Z = 247 \]
\[N_Z (W+E) = 391 \]
Measurements with high $E_T^{e\pm}$

- Good modeling of observed $W \rightarrow e\nu$ distributions

Transverse Energy

- Data (5547 $W \rightarrow e\nu$ Candidates)
- Signal MC
- QCD Bkg (from Data)
- $W \rightarrow \tau \nu$ MC
- $Z \rightarrow e^+ e^-$ MC

$\int L \sim 10 \text{ pb}^{-1}$

March 2002 - June 2002

CDF Run II Preliminary

Missing Transverse Energy

- Data (5547 $W \rightarrow e\nu$ Candidates)
- Signal MC
- QCD Bkg (from Data)
- $W \rightarrow \tau \nu$ MC
- $Z \rightarrow e^+ e^-$ MC

CDF Run II Preliminary

MET resolution from MB data consistent with Run 1

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-Pisa

MET detail
Measurements with high Et e±

W cross section:

- \(\sigma_W \times \text{BR}(W \rightarrow e\nu) \, (\text{nb}) = 2.60 \pm 0.07_{\text{stat}} \pm 0.11_{\text{syst}} \pm 0.26_{\text{lum}} \)

- Consistent with Run 1 results rescaled for higher energy:
 \(2.72 \pm 0.02_{\text{stat}} \pm 0.08_{\text{syst}} \pm 0.09_{\text{lum}} \)

 (use Sterling et al. NNLO predictions)

Nr. Candidates:
- 5547 in 10 pb⁻¹

Background:
- QCD: 260 ± 34 ± 78
- \(Z \rightarrow e^+ e^- \): 54 ± 2 ± 3
- \(W \rightarrow \tau \nu \): 95 ± 6 ± 1

0.16 soon!
Measurements with high $E_T\mu^\pm$

- Clear evidence of $Z\rightarrow \mu^+\mu^-$
 - Signal shown for OS muons detected in both inner and outer muon chambers

$$\begin{align*}
46.3 \text{ GeV} & \rightarrow \mu_1 \\
2.17 \text{ GeV} & \rightarrow E_T \rightarrow \mu_2 \\
44.8 \text{ GeV} & \rightarrow \mu_2
\end{align*}$$

- 57 candidate events in $66<M_{inv}<116$ range
- $N_Z = 53.2\pm7.5 \pm2.7$

CDF run II preliminary
16 pb$^{-1}$

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Measurements with high \(\text{Et} \) \(\mu^\pm \)

- **W cross section:**

 \[
 \sigma_{\text{W}} \times \text{BR}(W \to \mu\nu) \ (\text{nb}) = 2.70 \pm 0.04_{\text{stat}} \pm 0.19_{\text{syst}} \pm 0.26_{\text{lum}}
 \]

 Consistent with Run 1 results rescaled for higher energy:

 \[
 2.41 \pm 0.08_{\text{stat}} \pm 0.15_{\text{syst}} \pm 0.16_{\text{lum}}
 \]
 (use Sterling et al. NNLO predictions)

- **Nr. Candidates:**

 - 4561 in 16 pb\(^{-1}\)

- **Background:**

 - QCD: 104 \(\pm \) 53
 - Cosmics: 73 \(\pm \) 30
 - \(Z \to \mu\mu \): 247 \(\pm \) 13
 - \(W \to \tau\nu \): 145 \(\pm \) 10

- **R**

 \[R = \frac{\sigma(W \to \mu\nu)}{\sigma(Z \to \mu\mu)} = 13.66 \pm 1.94_{\text{stat}} \pm 1.12_{\text{syst}} \]

 Consistent with Run 1 results
Measurements with low Et \(\mu^\pm \)

- \(\psi \) trigger improved
 - \(p_T^{\mu} > 2.0 \rightarrow 1.5 \text{ GeV} \)
 - \(\Delta\phi > 5^\circ \rightarrow 2.5^\circ \)

- Observed \(\psi \) rates are consistent with expected increase due the lowering of the thresholds

CDF Run II Preliminary

Events: 108777 \(\pm \) 860
15 MeV with Silicon
\(\sigma = 21.6 \text{ MeV} \)

13 pb\(^{-1}\)
No Silicon
100k \(\psi \) only

ICHEP 2002, Amsterdam F. Bedeschi, INFN-Pisa
Measurements with low Et μ^{\pm}

- Inclusive B lifetime with ψ’s
 - Fit pseudo-ctau = $L_{xy} \psi F_{MC} * M_{\psi}/p_{T,\psi}$ distribution
 - Output: b lifetime, fraction of ψ from B
 - $\text{ctau} = 458\pm10$ stat. ±11 syst. μm
 (PDG: 469 ± 4 μm)
 - ψ from B = 17% ($p_{T,\psi} > 4$ GeV)

- Resolution function from large prompt component
 - $R = \text{narrow + wide Gaussian (19%)} + \text{exponential tails (1.2%)}$
 - Scale factor on error returned from vertex fit 1.069

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Measurements with low Et \(\mu^\pm \)

- Use \(\psi \)'s to understand E-loss and B-field corrections
- Check with other known signals

Graphical Content

- **CDF Run 2 Preliminary**
 - Add B scale correction
 - Tune missing material \(\sim 20\% \)
 - Correct for material in GEANT
 - Raw tracks

- **Plot of D^0**
 - Before corrections
 - After corrections and fit bias removed
 - PDG \(\pm 1\sigma \)

- **Plot of J/\(\psi \)**
 - Events/30 MeV
 - 1S
 - 2S
 - 3S
Measurements with low Et μ^\pm

- **B masses:**
 - $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ (control)
 - $B_u \rightarrow J/\psi K^+$ lifetime
 - $B_d \rightarrow J/\psi K_0^*$ ($K_0^* \rightarrow K^+\pi^-$)
 - $B_s \rightarrow J/\psi \phi$ ($\phi \rightarrow K^+K^-$)

<table>
<thead>
<tr>
<th></th>
<th>CDF 2002</th>
<th>$\Delta \text{PDG}/\sigma$</th>
<th>σ(CDF)</th>
<th>σ(PDG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\psi(2S)$</td>
<td>3686.43\pm0.54</td>
<td>0.86</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>B_u</td>
<td>5280.60\pm1.70\pm1.1</td>
<td>0.77</td>
<td>4.05</td>
<td></td>
</tr>
<tr>
<td>B_d</td>
<td>5279.80\pm1.90\pm1.4</td>
<td>0.17</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>B_s</td>
<td>5360.30\pm3.80\pm2.10\pm2.90</td>
<td>2.10 \pm1.81 \pm1.81</td>
<td>1.90</td>
<td></td>
</tr>
</tbody>
</table>

ICHEP 2002, Amsterdam
F. Bedeschi, INFN
Measurements with jets

- Raw Et only:
 - Jet 1: $ET = 403$ GeV
 - Jet 2: $ET = 322$ GeV

Jet expectations
Raw jet distributions
Hadronic Energy Scale

- Use J/ψ muons to measure MIP in hadron calorimeters
 - $\frac{(\text{Run II})}{(\text{Run 1})} = 0.96 \pm 0.005$

- Gamma-jet balancing
 - $f_b = \frac{(p_T^{\text{jet}} - p_T^{\gamma})}{p_T^{\gamma}}$
 - Run Ib (central): $f_b = -0.1980 \pm 0.0017$
 - Run II (central): $f_b = -0.2379 \pm 0.0028$
 - Plug region corrections in progress

$\Delta f_b = (4.0 \pm 0.4)\%$

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Measurements with jets

● Jet shapes:
 ➢ Narrower at higher E_T
 ➢ Calorimeter and tracking consistent
 ➢ Herwig modeling OK

CDF RUN II Preliminary (16 pb$^{-1}$)

F. Bedeschi, INFN-Pisa

16 pb$^{-1}$ used for this study
Measurements with hadronic b triggers

- **L2 trigger on 2 tracks:**
 - $p_T > 2$ GeV
 - $|D| > 100$ μm (2 body)
 - $|D| > 120$ μm (multibody)

- Swamped by D mesons!
 - But see B’s as well….

CDF Run 2 preliminary

$D^0 \rightarrow K \pi$

$N_D = 56320$

10 pb$^{-1}$

$D_s^+ - D^+$ mass difference

- Both $D \rightarrow \phi \pi$ ($\phi \rightarrow KK$)
- $\Delta m = 99.28 \pm 0.43 \pm 0.27$ MeV
 - PDG: 99.2 ± 0.5 MeV
- Systematics dominated by background modeling

F. Bedeschi, INFN-Pisa
Measure ratios of CKM suppressed decays

- $\Gamma(D \to KK)/\Gamma(D \to K\pi) = (11.17\pm0.48\pm0.98)\%$ (PDG: 10.84 ± 0.45)
 - Main systematics (8%): background modeling
- $\Gamma(D \to \pi\pi)/\Gamma(D \to K\pi) = (3.37\pm0.20\pm0.16)\%$ (PDG: 3.76 ± 0.20)
 - Main systematics (4%): relative acceptance

CDF Run 2 preliminary

Signal: 5670
$D^0 \to KK$

L = 10 pb$^{-1}$

Signal: 2020
$D^0 \to \pi\pi$

F. Bedeschi, INFN-Pisa
Measurements with hadronic b triggers

D mesons:

What fraction from B?

- \(D^0 \): 16.4-23.1%
- \(D^{*+} \): 11.4-20.0%
- \(D^+ \): 11.3-17.3%
- \(D_s^+ \): 34.8-37.8%

Range of fract. from B using two extreme resolutions functions:
- single gaussian
- parametrization from \(K^0_S \) sample

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Measurements with hadronic b triggers

B → h⁺ h⁻

- Hadronic B decays observed
 - Yield lower than expected (*silicon coverage/SVT efficiency > x 3*)
 - S/N better than expected
 - Better S/N dilution compensates reduced statistics

CDF Run II Preliminary

- L = 11 pb⁻¹, 18 June 2002
- **B → h⁺ h⁻**
 - 33±9 signal events
 - Mean 5.215±0.013 GeV/c²
 - Width 0.053±0.011 GeV/c²

CDF Run II Preliminary

- L = 10 pb⁻¹
- **B⁺ → D⁰ π⁺**
 - #B⁺ = 56±12
Conclusion

- The CDF detector is fully functional and accumulating proton anti-proton data
- Tevatron is moving toward reaching performance goals
- Understanding of detector is advanced
- Many early physics results
 - sometimes competitive in spite of limited statistics
- Ready to exploit full Tevatron potential as luminosity increases

CDF is back!
Backup slides

- Tevatron plans
- Silicon detector performance
- Trigger and DAQ details
- Data sample
- Talks in parallel sessions
- \(Z \rightarrow e^+e^- \) FB asymmetry
- \(W \rightarrow e\nu \) selection details
- \(W \rightarrow \mu\nu \) details
- \(W \rightarrow \tau\nu \)
- MET resolution
- \(B \) mass plots
- \(B^+ \) lifetime
- Semileptonic B’s
- Jet expectations
- Jet raw Et distributions
Tevatron status

- **Short term plans:**
 - Run until October
 - Reach goal w/o Recycler: 5×10^{31} cm$^{-2}$sec$^{-1}$
 - 1-2 months shutdown
 - Complete Recycler work
 - Commission and integrate Recycler during 2003
 - Mostly in parallel with Tevatron colliding beam operation
 - Expect 100 – 200 pb$^{-1}$ delivered in 2002 ~ Run 1 data set
Detector Performance

- **Commissioning:**
 - L00 > 95%
 - SVXII > 90%
 - ISL > 80%

Completing cooling work

- % of silicon ladders powered and read-out by silicon system vs. time

F. Bedeschi, INFN-Pisa
Detector Performance

- **Trigger:**
 - Goal rates for $L = 2 \times 10^{32}$
 - $L1/L2/L3 = 50,000/300/50$ Hz
 - Typical now for $L \sim 10^{31}$
 - $L1/L2/L3 = 6,000/240/30$ Hz

- **DAQ**
 - Logging data at the planned rate of ~ 20 Mbyte/sec

- **Offline:**
 - Data is reconstructed in quasi real time on a dedicated production farm

Dataflow of CDF “Deadtimeless” Trigger and DAQ

- **Level 1:**
 - 7.6 MHz Synch. pipeline
 - 5544 ns latency
 - <50 kHz Accept rate

- **Level 2:**
 - Asynch. 2 stage pipeline
 - $\sim 20 \mu$s latency
 - 300 Hz Accept Rate

- **L1 + L2 rejection:** 20,000:1
Data Sample

- Stable physics trigger table established since January ’02

- Summary of data used for this conference:
 - Data period: January – June, 2002
 - Delivered luminosity: 33.0 pb\(^{-1}\)
 - Live (to-tape): 23.5 pb\(^{-1}\)
 - “Good runs”: 23.3 pb\(^{-1}\)
 - “Good runs” with all systems \(\sim 10.0\) pb\(^{-1}\) (cfr. 110 pb\(^{-1}\) Run 1)

- Radiation induced COT/SVX VME power supply failures (fixed!)
- Instabilities in Silicon readout (much improved)
CDF-II results in parallel sessions

- **Electroweak, session 4:**
 - Prospects for EW physics in Run 2 (D. Glenzinski)
 - W boson cross section and decay properties (K. Bloom)

- **QCD, session 5:**
 - Jet and gamma physics (J. Dittmann)
 - Heavy Flavor at CDF (C. Paus)

- **Heavy Quark, session 8:**
 - First results with a hadronic trigger (A. Cerri)

- **New Phenomena, session 10:**
 - MSSM Higgs at the Tevatron (A. Connoly)
 - CHAMP searches (B. Orejudos)

- **R&D, session 13:**
 - Calorimetry (R. Erbacher)
 - Tracking (S. Nahn)
Measurements with high Et e±

Uncorrected $Z \rightarrow e^+e^-$ angular distributions and asymmetries

Measurements compared with Pythia/CTEQ5L prediction

F. Bedeschi, INFN-Pisa
Measurements with high Et e±

- Clear evidence for $W \rightarrow e\nu$ signal
 - Isolated central electron
 - $Et > 25$ GeV, $Et > 25$ GeV
Measurements with high Et μ^\pm

- Good modeling of observed $W \rightarrow \mu \nu$ distributions
- Measure $\sigma(W \rightarrow \mu \nu)$ and $R = \sigma(W \rightarrow \mu \nu)/\sigma(Z \rightarrow \mu \mu)$

CDF Run II
16 pb$^{-1}$
preliminary

Longitudinal beam profile

entries per 2 GeV

met

transverse missing energy (GeV)

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Evidence for typical \(\tau \) decay multiplicity in \(W \rightarrow \tau \nu \) selections

\(W \rightarrow \tau \nu \) : number of tracks, associated with the \(\tau \) candidate

CDF Run II Preliminary, \(\int L \approx 15 \text{ pb}^{-1} \)
Minimum bias events

- Run 1: $0.53/\sqrt{\sum Et}$ with forward cal. Use $|\eta|<4.2$
- Run II: $0.60/\sqrt{\sum Et}$ with plug only $|\eta|<3.6$
 - With miniplug $|\eta|<5.5$

Chi2 / ndf = 100.3 / 34
Prob = 1.11e-09
p0 = -0.1109 ± 0.01549
p1 = 0.6095 ± 0.004244

ICHEP 2002, Amsterdam F. Bedeschi, INFN-Pisa
Measurements with low Et μ^\pm

- More mass plots:
 - Bd, Bs

![Mass plots for Bd $\rightarrow \psi K^{*0}$ and Bs $\rightarrow \psi \phi$]
Measurements with low Et \(\mu^\pm \)

- **B^+ lifetime:**
 - \(B^+ \to J/\psi K^+ \)
 - **Fit results:**
 - \(c\tau = 446^{+43}_{-30} \pm 13 \) \(\mu \)m
 - \((\Delta \text{PDG/}\sigma = 1.2) \)
 - Res. scale factor 1.16
 - Conservative systematic error

\(# B^+ \sim 154 \)
Measurements with inclusive leptons

- Find large samples of semileptonic B decays

CDF Run II Preliminary

\[L = 11.5 \text{ pb}^{-1} \]

\[B \rightarrow l \nu D^* X \ (l = e \text{ or } \mu) \]
\[\rightarrow D^0 \pi \]
\[\rightarrow K \pi \]

Right sign
Wrong sign

CDF Run II Preliminary

\[L = 11.5 \text{ pb}^{-1} \]

\[B \rightarrow l \nu D^0 X \]
\[\rightarrow K \pi \]

Right sign
Wrong sign

ICHEP 2002, Amsterdam F. Bedeschi, INFN-Pisa
Measurements with jets

- Expectations:
 - Increase max. energy reach
 - Study both central and forward
 - New physics is mostly central
 - Pdf’s affect both regions

- Current work:
 - Accumulate large samples
 - Understand energy corrections
 - E-scale, jet shapes, MC tuning

ICHEP 2002, Amsterdam
F. Bedeschi, INFN-Pisa
Measurements with jets

- Jet distr. from data
 - Raw E_T
 - Each trigger rescaled for pre-scale factor

Leading Jet ET in CDF Jet Events
CDF Run 2 Preliminary (12/14/2001 - 6/2/2002) 25.6 pb-1

Fixed cone algorithm: $R = 0.7$