

The CDF Collaboration

1 Research Lab

Europe

6 Universities 4 Universities

1

2 Research Labs

1 University

- 1 University
- 1 University

Asia

5 Universities 1 Research Lab

4)	

1 University

3 Universities

58 institutions

581 physicists

ICHEP 2002, Amsterdam

First CDF Run II Results

Outline

Franco Bedeschi CDF Collaboration INFN - Pisa

Status of the Tevatron
Status of the CDF detector
First results with Run II data
Outlook and conclusions

ICHEP 2002, Amsterdam

Tevatron status

Tevatron operations started in March 2001

- Luminosity goals for run 2a:
 - **5-8x10³¹** cm⁻²sec⁻¹ w/o Recycler
 - $2x10^{32}$ cm⁻²sec⁻¹ with Recycler

> Achieved:

- 2.2×10^{31} cm⁻²sec⁻¹ in July '02
- Now recovered from June shutdown to improve p-bar cooling
- 54 pb⁻¹ delivered until early June
 - ♦ 35 pb⁻¹ are on tape
 - ♦ 10 20 pb⁻¹ used for analyses shown at this conference (details)

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-

plans

The Upgraded CDF Detector

Forward region restructured

- Major qualitative improvements over Run 1 detector:
 - > Whole detector can run up to 132 nsec interbunch
 - > New full coverage 7-8 layer 3-D Si-tracking up to $|\eta| \sim 2$
 - > New faster drift chamber with 96 layers
 - New TOF system
 - > New plug calorimeter
 - ► New forward muon system
 - > New track trigger at Level 1 (XFT)
 - > New impact parameter trigger at Level 2 (SVT)

***** All systems working well

Silicon and L2 took longer to commission

ICHEP 2002, Amsterdam

Detector Performance

p₊(K[±])<1.5 GeV/c (no PID)

 $Ldt = 1.5 \, pb^{-1}$

0.98

0.96

1

1.02

Entiçes per 1 00

3000

2000

1000

Detector Performance

CDF Time-of-Flight : Tevatron store 860 - 12/23/2001

\div TOF resolution within 10 –20% of design value

> Improving calibrations and corrections

S/N = 2354/93113

N(bkg) = 93113

1.04

 $N(\phi) = 2354 \pm 325$

1.06

06 1.08 1. M(K⁺,K⁻) (GeV/c²)

Detector Performance

Detector Performance

8 VME crates
 Find tracks in
 Si in 20 μs
 with offline
 accuracy

Secondary VerTex L2 trigger

- Online fit of primary Vtx
- Beam tilt aligned
- D resolution as planned
 - **48** μm (**33** μm beam spot transverse size)

ICHEP 2002, Amsterdam

Use data to understand the new detector:

- > energy scales in calorimeter and tracking systems
- > detector calibrations and resolutions
- ➤ tune Monte Carlo to data

Use data to do physics analyses

- Real measurement beyond PR plots
- Quality of standard signatures
- Rates of basic physics signals
- Surprisingly some results are already of relevance in spite of the limited statistics

Several CDF presentations made in the parallel sessions

In the following brief/incomplete summary of a lot of work

ICHEP 2002, Amsterdam

EM Calorimeter scale

\diamond 638 Z \rightarrow e⁺e⁻ in 10 pb⁻¹ $\succ \sigma(M) \sim 4 \text{ GeV}$ FB asymmetry

- Check Z mass in data and simulation after corrections
 - > Central region:
 - Mean: +1.2% data, -0.6% sim.
 - Resolution +2% simulation
 - Forward region (Plug):
 - Mean: +10/6.6% data, +2.0%simulation
 - Resolution: +4% simulation

ICHEP 2002, Amsterdam

Measurements with high Et e^{\pm}

ICHEP 2002, Amsterdam

ICHEP 2002, Amsterdam

ICHEP 2002, Amsterdam

Measurements with low Et μ^{\pm}

- ♦ ψ trigger improved
 > $p_T^{\mu} > 2.0 \rightarrow 1.5 \text{ GeV}$ > Δφ > 5° → 2.5°
- Observed ψ rates are consistent with expected increase due the lowering of the thresholds

• Inclusive B lifetime with ψ 's

• MC $M\Psi/p_T\Psi$ • MC $M\Psi/p_T\Psi$ • Output: b lifetime, fraction of ψ from B O^{10} • c τ =458±10 stat. ±11 syst. µm (PDG: 469±4 ····) \succ Fit pseudo-c $\tau = L_{xv} \Psi * F_{MC} * M \Psi / p_T \Psi$ distribution

• ψ from B = 17% ($p_T \psi > 4 \text{ GeV}$)

- Resolution function from large prompt component
 - R = narrow + wide Gaussian (19%)+ exponential tails (1.2%)

 \succ Scale factor on error returned from vertex fit **1.069**

ICHEP 2002, Amsterdam

Measurements with jets

★ Raw Et only: ▶ Jet 1: ET = 403 GeV ▶ Jet 2: ET = 322 GeV

Jet expectations Raw jet distributions

21

ICHEP 2002, Amsterdam

Hadronic Energy Scale

• Use J/ψ muons to measure MIP in hadron calorimeters > (Run II)/(Run 1) = 0.96 ± 0.005 q \mathcal{M}_{γ} g ✤ Gamma-jet balancing \succ f_b = (p_T^{jet} - p_T^{γ})/p_T^{γ} Run Ib (central): Run II (central):

Plug region corrections in progress

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-Pisa

 $f_{\rm b} = -0.2379 \pm 0.0028$

Measurements with jets

✤ Jet shapes:

- > Narrower at higher E_T
- Calorimeter and tracking consistent
- Herwig modeling OK

ICHEP 2002, Amsterdam

Measure ratios of CKM suppressed decays

 $\Gamma(D \rightarrow KK)/\Gamma(D \rightarrow K\pi) = (11.17 \pm 0.48 \pm 0.98)\%$ (PDG: 10.84±0.45)

Main systematics (8%): background modeling

 $\Gamma(D \rightarrow \pi \pi) / \Gamma(D \rightarrow K \pi) = (3.37 \pm 0.20 \pm 0.16)\%$ (PDG: 3.76±0.20) Main systematics (4%): relative acceptance

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-Pisa

Measurements with hadronic b triggers

Hadronic B decays observed

- > Yield lower than expected (silicon coverage/SVT efficiency > x 3)
- ➢ S/N better than expected
 - Better S/N dilution compensates reduced statistics

ICHEP 2002, Amsterdam

The CDF detector is fully functional and accumulating proton anti-proton data

Tevatron is moving toward reaching performance goals

- Understanding of detector is advanced
- Many early physics results

> sometimes competitive in spite of limited statistics

Ready to exploit full Tevatron potential as luminosity increases

ICHEP 2002, Amsterdam

Backup slides

- \geq Tevatron plans
- Silicon detector performance
- Trigger and DAQ details
- Data sample
- Talks in parallel sessions
- \geq Z \rightarrow ee FB asymmetry
- \geq W \rightarrow ev selection details
- \geq W \rightarrow $\mu\nu$ details
- $\geq W \rightarrow \tau \nu$
- \geq MET resolution
- ≥B mass plots
- \geq B⁺ lifetime
- Semileptonic B's
- _Jet expectations
- _Jet raw Et distributions

ICHEP 2002, Amsterdam

Tevatron status

Short term plans:

Run until October

- Reach goal w/o Recycler:
 \$5-8x10³¹ cm⁻²sec⁻¹
- ➤ 1-2 months shutdown
 - Complete Recycler work
- Commission and integrate Recycler during 2003
 - Mostly in parallel with Tevatron colliding beam operation

• Expect 100 – 200 pb⁻¹ delivered in 2002 ~ Run 1 data set

Back Back to index

ICHEP 2002, Amsterdam

64 cm

Detector Performance

Jul 02,02 Date

Detector Performance

Stable physics trigger table established since January '02 Trigger/DAO details

Summary of data used for this conference:

- Data period: January June, 2002
- Delivered luminosity:
- Live (to-tape):
- ➤ "Good runs":

33.0 pb⁻¹ 23.5 pb⁻¹

- s": 23.3 pb⁻¹
- "Good runs" with all systems ~ 10.0 pb⁻¹ (cfr. 110 pb⁻¹ Run 1)
 Radiation induced COT/SVX VME power supply failures (fixed!)
 Instabilities in Silicon readout (much improved)

F. Bedeschi, INFN-Pisa

Back

Back to index

CDF-II results in parallel sessions

- Electroweak, session 4:
 - Prospects for EW physics in Run 2
 - ➢ W boson cross section and decay properties

✤ QCD, session 5:

- Jet and gamma physics
- ➢ Heavy Flavor at CDF
- Heavy Quark, session 8:
 - First results with a hadronic trigger

✤ New Phenomena, session 10:

- ➤ MSSM Higgs at the Tevatron
- CHAMP searches

✤ R&D, session 13:

- > Calorimetry
- ➢ Tracking

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-Pisa

(D. Glenzinski) (K. Bloom)

(J. Dittmann) (C. Paus)

(A. Cerri)

(A. Connoly)(B. Orejudos)

(R. Erbacher) (S. Nahn)

Back Back to index

Measurements with high Et e^{\pm}

 $W \rightarrow \tau v$

Evidence for typical τ decay multiplicity in W $\rightarrow \tau \nu$ selections $W \rightarrow \tau \nu$: number of tracks, associated with the τ candidate

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-Pisa

Back to index

Back Back to index

Minimum bias events

- > Run 1: $0.53/\sqrt{\Sigma}$ Et with forward cal. Use $|\eta| < 4.2$
- > Run II: $0.60/\sqrt{\Sigma}$ Et with plug only $|\eta| < 3.6$

With miniplug $|\eta| < 5.5$

ICHEP 2002, Amsterdam

Find large samples of semileptonic B decays

Back Back to index

Measurements with jets

Jet Yields Bin 1 - 0.1 < |y| < 0.7

Back

Back to index

Expectations:

- Increase max. energy reach
- Study both central and forward
 New physics is mostly central
 Pdf's affect both regions

Current work:

- Accumulate large samples
- Understand energy corrections
 E-scale, jet shapes, MC tuning

ICHEP 2002, Amsterdam

Measurements with jets

ICHEP 2002, Amsterdam

F. Bedeschi, INFN-Pisa

Fixed cone algorithm: R = 0.7

Leading Jet ET (GeV)

Back

Leading Jet ET (GeV)

Back to index