Cosmic Ray Backgrounds for an off-Axis Detector
Cosmic Flux for Surface Detector

In 100 kt-yr, expect about 40 intrinsic beam ν_e
What Are We Afraid Of?

Neutrons? x, γ, π⁰? Decay? Mis-ID?– The UNKNOWN

• Can this detector work on the surface?
• Will we need an external veto?
Duty factor \(\approx 5 \times 10^{-6} \)

In 5 calendar years, we will be live for
\(~50\% \times 5\text{yr} \times 5 \times 10^{-6} \times 3.2 \times 10^7 \)
or \(~400\) seconds
\(\Rightarrow 120 \text{ million muons} \)

We need rejection of order 1 in 10 million
to reach intrinsic \(\nu_e \) level

\(\sim 100\times \text{worse if we ever go to resonant extraction (1-2ms)} \ldots \)
What Do We Already Know?

• Scale: need ~ 1 in 10 million rejection

• Beyond confidence regime of simulations
 – Specific values of inefficiencies, correlations, physics parameters
 – Unanticipated processes, conspiracies

• Experience of previous experiments
 – Different energy range than proton decay
 – Needs to be studied for our choice of geometry, absorber, detector.
 – Input welcome! MACRO, SK?
Cosmic Background Studies

We can use a “small” detector

5×10^{-6} duty factor

- 20 ton detector taking data continuously for 1 year
- Compare “50 kt-yr” with beam – really 0.25 ton-year

Regardless of insight from simulation and previous experiments, such a study is quite feasible and affordable
Cosmic Background Studies

20 RPCs from Virginia Tech (Belle)

See talk by
C. Hagner

E.g., pairs of planes:
1/3 \(X_0 \) plastic between
10 planes \(\times 0.15 \) m
⇒ ~ 20 tons of plastic
Issues

• Small fiducial region
 – Should be sufficient statistics for as long as fiducial more than 25%

• Only \(\sim 3X_0 \) – electrons can traverse length
 – How good is \(\mu/e \) separation without using track length?
 • Electrons aren’t terribly “shower-like”
 – Can change aspect of detector to study this if we see any potential background.
Status

• Small RPC test stand started at lab 6 at FNAL
 – LODEN test project
• 20 Belle RPCs will arrive soon
• Upcoming work
 – Build appropriate DAQ
 – Choose and build readout strip construction
 – Engineer infrastructure for 20 ton detector
 • Gas, mechanical
 – Procure plastic
Summary

- Surface detector will see 100s of millions of muons during live time
- Need to understand whether these can lead to backgrounds on scale of 40 events
- Direct measurement is surest path forward
- Project to study backgrounds in low density RPC detector at Lab 6:
 - 20 ton detector will give valuable feedback with 1 year of running.