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Abstract

Maximum likelihood fits to data can be done using binned data (histograms)

and unbinned data. With binned data, one gets not only the fitted parameters

but also a measure of the goodness of fit. With unbinned data, currently, the fitted

parameters are obtained but no measure of goodness of fit is available. This remains,

to date, an unsolved problem in statistics. Using Bayes theorem and likelihood

ratios, we provide a method by which both the fitted quantities and a measure

of the goodness of fit are obtained for unbinned likelihood fits, as well as errors

in the fitted quantities. We provide an ansatz for determining Bayesian a priori

probabilities.

1 Introduction

We outline a method by which goodness of fit measures can be calculated in

an unbinned likelihood analysis. We are able to also calculate the probability
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density function of the fitted variables and hence their errors in a rigorous

manner. We briefly describe the currently used method of “maximum likeli-

hood”, originally due to R.A.Fisher [1]. Let s denote a set parameters defining

our theoretical model used to describe data. Example of s are the mass of the

top quark or the lifetime of a particle. The symbol s (for signal) can in gen-

eral denote a discrete or continuous set of variables. Let c denote a set of

observations describing a high energy physics event and there are n events

in our dataset. In general, for each event, c can be a vector of dimension d.

Let P (c|s)dc describe the probability of observing the configuration c in the

d-dimensional phase space volume dc given the theoretical parameter set s.

Thus P (c|s) is a probability density function (pdf) in the variable c and obeys

∫
P (c|s)dc = 1 (1)

Then one can define a likelihood L of observing the dataset as

L =
i=n∏
i=1

P (ci|s) (2)

The maximum likelihood point can be found of observing by minimizing the

negative log-likelihood −logeL defined as

−logeL = −
i=n∑
i=1

loge(P (ci|s)) (3)

while varying the parameters s either analytically or numerically to obtain the

best values s∗ of s that fit the data.

At the maximum likelihood point, s∗, the best fit values of s, are obtained.

There is however no measure of the goodness of fit, since the likelihood at

the optimal value is not normalized to anything. There is strictly no measure
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for the error on the fitted parameters, since L is not a probability density

function of s, though people have calculated errors by treating the −logeL at

the minimum as though it were equivalent to 1
2
χ2. Such error calculations are

not hitherto considered rigorously justifiable.

Unbinned likelihood fits, despite these disadvantages, are extremely useful in

finding s∗ since one does not have to treat bins with small populations in a

special manner as would be the case for binned fits.

In this paper we use Bayes theorem to rectify the above disadvantages. In

the process, we obtain a measure for the goodness of fit and also P (s|c), the

posterior pdf of s, enabling us to calculate the errors of the fitted values in a

rigorous way.

2 Bayes Theorem

We derive Bayes theorem here for the sake of completeness and to illustrate

the main ideas. In the Bayesian approach [2], the theoretical parameters s can

have a probability distribution both a priori and a posteriori. The a priori

distribution refers to the knowledge of s before the given set of observations

are made. The a posteriori probability distribution refers to the distribution

of s, given the set of observations c.
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2.1 Joint and Conditional Probabilities

We define a joint probability density for the theory parameters s and the

observables c as

dPjoint = Pjoint(s, c)ds dc (4)

which is the probability that s occurs in interval s and s + ds and c occurs in

a volume element dc centered around c.

We define the conditional probability density

dPconditional = P (s|c)ds (5)

as the probability density of observing s in the interval s and s+ds given that

c occurs in a volume element dc centered around c .

Similarly, the conditional probability density

dPconditional = P (c|s)dc (6)

is defined as the probability density of observing c in a volume element dc

centered around c, given that s occurs between s and s + ds . Then, by the

laws of probability , we can write the joint probability

dPjoint = Pjoint(s, c)ds dc = P (c|s)dc × P (s)ds (7)

Where P (s) is the a priori probability of observing s in interval s and s + ds

, and P (c|s)dc is the probability of observing c given s . One can also obtain

the same joint probability, by first observing c with a priori probability P (c)
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and then using the conditional probability P (s|c) , i.e.

dPjoint = Pjoint(s, c)dsdc = P (s|c)ds × P (c)dc (8)

By equating 7 and 8, one gets the fundamental relation leading up to Bayes

Theorem.

dPjoint = P (c|s)dc × P (s)ds = P (s|c)ds × P (c)dc (9)

Expressed in terms of densities, dropping ds and dc terms, this yields

P (c|s) × P (s) = P (s|c) × P (c) (10)

One is interested in evaluating P (s|c), the probability of the theory parame-

ters, given a set of observations c. This becomes,

P (s|c) =
P (c|s) × P (s)

P (c)
(11)

The a priori probability P (c) is not an independent quantity, given the a

priori probability P (s) which represents the knowledge of s before the set of

observations c . The reason for this is that P (s|c) integrated over s must add

up to unity.

2.2 Some Normalization Formulae

Integrating over one of the variables in the joint probability yields, using equa-

tion 7, the following relations.

P (c) ≡
∫

Pjoint(s, c)ds =
∫

P (c|s) × P (s)ds (12)
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where the ≡ sign is the definition of the a priori probability P (c), since one

integrates the joint probability Pjoint(s, c) over all values of s . This then yields

P (c) =
∫

P (c|s) × P (s)ds (13)

also, integrating the joint probability over c, one gets

P (s) ≡
∫

Pjoint(s, c)dc =
∫

P (c|s) × P (s)dc (14)

i.e.

P (s) =
∫

P (c|s) × P (s)dc (15)

or
∫

P (c|s)dc = 1 (16)

Similarly, using equation 8, one gets relations similar to the above with c and

s interchanged. Summarizing, one gets the following normalization relations.

P (c) =
∫

P (c|s) × P (s)ds (17)

P (s) =
∫

P (s|c) × P (c)dc (18)∫
P (s)ds = 1 (19)∫
P (c)dc = 1 (20)∫

P (c|s)dc = 1 (21)∫
P (s|c)ds = 1 (22)

Substituting 17 in 11, one gets the derivation of Bayes Theorem.

P (s|c) =
P (c|s) × P (s)∫
P (c|s) × P (s)ds

(23)

The above equation normalizes to unity as per equation 22. This is the central

expression of Bayes’ theorem.
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2.3 Observation of Many Configurations

Now we come to one of the more beautiful properties of formula 23, namely it

is recursive. Let us observe two separate configurations say, c1 and c2 . Then

equation 23 yields for c1 ,

P (s|c1) =
P (c1|s) × P (s)∫
P (c1|s) × P (s)ds

(24)

Now we observe c2. We wish to compute P (s|c1, c2) , the probability of s given

c1 and c2 . We can then replace the a priori probability for s, P (s) in equation

23 by the probability of s after observing c1 (i.e. P (s|c1)) to calculate the

probability of s given c1 and c2 . This yields,

P (s|c1, c2) =
P (c2|s) × P (s|c1)∫
P (c2|s) × P (s|c1)ds

(25)

Substituting for P (s|c1) from equation 24, we get

P (s|c1, c2) =
P (c2|s)P (c1|s)P (s)/

∫
P (c1|s)P (s)ds∫

P (c2|s)P (c1|s)P (s)ds/
∫

P (c1|s)P (s)ds
(26)

yielding P (s|c1, c2) =
P (c2|s)P (c1|s)P (s)∫
P (c2|s)P (c1|s)P (s)ds

(27)

generalizing, P (s|c1, c2...cn) =
P (cn|s)...P (c2|s)P (c1|s)P (s)∫
P (cn|s)...P (c2|s)P (c1|s)P (s)ds

(28)

Another way to think about equation 28 is to think of the n configurations

as one massive super configuration cn , which also obeys the Bayes theorem

equation 23

P (s|cn) =
P (cn|s) × P (s)∫
P (cn|s) × P (s)ds

(29)

where P (cn|s) = P (cn|s)...P (c2|s)P (c1|s) (30)
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It should be noted that the probability P (cn|s) obeys the normalization con-

dition 21. Equation 30 is just the law of multiplication of independent proba-

bilities. This implies that it is possible to chain probabilities in Bayes theorem

as in equation 25 if and only if the configurations are statistically independent.

This is certainly true in the case of high energy physics events.

The expression for a posteriori probability P (s|cn) in equation 29 cannot be

used as is unless one knows P(s), the a priori probability of s. In the “Bayesian

approach”, people use various guesses for P(s) and a lot of care and energy

are expended in arriving at “reasonable” functions for P(s).

2.4 Likelihood Ratios

We now recast the Bayes theorem equation 29 as a set of likelihood ratios LR.

LR =
P (s|cn)

P (s)
=

P (cn|s)
P (cn)

(31)

where we have substituted the function P (cn) for the normalizing integral in

the denominator using equation 13. The likelihood ratio LR has a very impor-

tant invariant property. It is invariant under the transformations of variable

sets c → c′ and s → s′ where c′ and s′ are functions of the variable sets c

and s. It is possible to ask what exact variables one uses to form the vec-

tor c. For instance,when a jet is measured experimentally, does one use the

energy, pseudo-rapidity and azimuth of the jet or the three components of

the energy three vector as components of c? Clearly, the probability density

function P (c|s) will depend on the choice of the variable set c since,

P (c′|s) = | dc

dc′
|P (c|s) (32)
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where, | dc
dc′ | denotes a Jacobian of transformation to go from the set of variables

c to c′. However, the same Jacobian ocurs in the denominator of the LR, hence

the likelihood ratio is unaffected by the transformation. The same argument

can be made with respect to transformations of the variable set s → s′. These

are extremely important properties, so we henceforth work with the likelihood

ratio LR and not the likelihoods L which do not possess these properties.

3 The Principle of Maximum Likelihood Ratios

The equation 31 for LR can be expanded as follows.

LR =
P (cn|s)
P (cn)

=
P (c1|s)
P (c1)

× P (c2|s)
P (c2)

. . . × P (cn|s)
P (cn)

(33)

where we have used the independence of a priori probabilities for P (ci), i =

1, n. Similarly, one gets expressions,

LR =
P (s|cn)

P (s)
=

P (s|c1)

P (s)
× P (s|c2)

P (s)
. . . × P (s|cn)

P (s)
(34)

where we have derived equation 34 from equation 33 by applying equation 31

to the likelihood ratios of the individual events in the product. In order to

find the optimal set of parameters s, we maximize the likelihood ratio LR in

equation 33 with respect to s. This is equivalent to minimizing the negative

log likelihood ratio logeLR.

−∂logeLR
∂s

= −
i=n∑
i=1

∂logeP (ci|s)
∂s

= 0 (35)

Notice that this is the same set of equations that one gets when maximizing the

likelihood as in equation 3, since the a priori probabilities P (ci) are constant
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with respect to variations in s. So one gets the same set of optimal variables s∗

whether one maximizes the likelihood L or the likelihood ratio LR. However,

at the optimum, the likelihood ratio can be used to obtain a goodness of fit

parameter as we show below, whereas the likelihood method would be unable

to provide this information. One can now ask what the minimum value of

LR is with respect to variations in the event configuration, for a fixed value

of theory; i.e. what event configurations produce the minimum value of the

negative log likelihood? Differentiating equation 33 with respect to ci, one

gets,

−∂logeLR
∂ci

= −∂logeP (ci|s)
∂ci

+
∂logeP (ci)

∂ci

= 0 (36)

i.e

∂logeP (ci|s)
∂ci

=
∂logeP (ci)

∂ci

(37)

P (ci|s) = P (ci) (38)

The equation 38 implies that the lowest value of the likelihood ratio occurs

when the experimental probability density P (c) and the theory probability

density P (c|s) are the same at the observed events. The negative log likelihood

is zero at this point, yielding the best possible fit.

4 Evaluating the Function P (c) and the Goodness of Fit

The key point to note is that just as P (s) is the a priori probability of the

theoretical parameter s, P (c) is the a priori probability of the data. In order to

evaluate the likelihood ratio LR at the maximum likelihood point, one needs

to evaluate the function P (c) at the observed event configurations c1, c2 . . . cn.
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So the problem to solve is this: given the event configurations c1, c2 . . . cn, what

is their probability density? Well known methods exist to estimate the pdf ′s

given discrete event distributions. These are collectively titled probability den-

sity estimators (PDE), which have recently found application in high energy

physics analyses [3].

As noted above, the probability density function P (c) is the a priori pdf of the

data. In previous applications, to the author’s best knowledge, the function

P (c) was subsumed into the equation 13 and expressed in terms of an unknown

P (s). This resulted in the theory pdf P (c|s) being evaluated at the data points

c1, c2 . . . cn, but not the data pdf ! It is precisely this failure to evaluate P (c)

given c that has led to the absence of goodness of fit criteria in unbinned

likelihood fits.

In binned likelihood fits, one fits a theoretical curve to a binned set of data

points. Two distributions, those of theory and data, are involved in providing

a goodness of fit measure such as χ2 in the binned approach. In the unbinned

method, however, one finds the maximum likelihood point by evaluating the

theoretical function P (c|s) at the data points ci, i = 1, n. There is only one

distribution involved, namely theory! One has hitherto ignored P (c), by sub-

suming it into a normalization constant. We rectify this lapse here and restore

P (c) to its proper role, namely, the pdf of the data.
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4.1 Probability Density Estimators

Let cα
i , α = 1, d denote the components of the d-dimensional vector c for the

ith event. Then we can define the mean vector < cα > as

< cα >=
1

n

i=n∑
i=1

cα
i (39)

The covariance (or error) matrix E of c is defined as

Eα,β =< cαcβ > − < cα >< cβ > (40)

where the <> implies average over the n events. The Hessian matrix H is

defined as the inverse of E. One can define a multivariate Gaussian Kernel

G(c) as

G(c) =
1

(
√

2πh)d
√

(det(H))
exp(

−Hαβcαcβ

2h2
) (41)

where the repeated indices imply summing over and the parameter h is a

“smoothing parameter”, which has[4] a suggested optimal value h ≈ n−1/(d+4).

The pdf of c is then given by

P (c) ≈ PDE(c) =
1

n

i=n∑
i=1

G(c − ci) (42)

Simply put, one takes an arbitray point c in configuration space, calculates the

separation from this point to all the measured points and sums up the values

(at c) of the Gaussians that are centered at the measured points. This sum

is divided by the number of Gaussians, which equals n. Since the Gaussians

are all normalized to unity, P (c) obeys equation 20. One can feed in any

value of c and the PDE will provide a probability density at that value of
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c. It is clear that the PDE method is generalizable to arbitrary dimensions

and will provide us with P (c). One should note that the Gaussian Kernel

function depends on n, the number of events in the sample. This dependence

is through the smoothing parameter, which goes to zero as n → ∞. In this

limit, equation 42 becomes

P (c) =
∫

P (c)G∞(c − ci)dci (43)

This implies that

G∞(c − ci) ≡ lim
n→∞

G(c − ci) = δ(c − ci) (44)

There exist generalizations [5] of the above scheme where the covariance matrix

is made locally variable that can estimate pdf ′s with greater complexity albeit

at a cost in computing speed. In what follows, we introduce a method by which

the smoothing factor can be made a function of the configuration variables

c in an iterative fashion, which may be equivalent to varying the covariance

matrix locally.

5 An Illustrative Example

We illustrate the ideas discussed above with a simple one-dimensional exam-

ple of events in which the observable c consists of decay times distributed

exponentially with a decay constant s=1.0 in arbitrary units. The conditional

probability P (c|s) defines our theoretical model and is given by

P (c|s) =
1

s
exp(−c

s
) (45)
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The PDE one dimensional Gaussian kernel for this simple case would be given

by

G(c) =
1

(
√

2πsh)
exp(− c2

2s2h2
) (46)

We generate a thousand events for which the smoothing parameter h is cal-

culated to be 0.125 as per equation[6] h = 0.5n−1/(d+4). Figure 1 shows the

generated events, the theoretical curve P (c|s) and the PDE curve P (c) nor-

malized to the number of events.

Fig. 1. Figure shows the histogram (with errors) of generated events. Superimposed

is the theoretical curve P (c|s) and the PDE estimator (solid) histogram with no

errors.

The PDE curve is a poor estimator of the data near the cutoff at c=0. This is

because the Gaussians centered at values of negative c would have contributed

to the curve near c=0. Also, for large values of c, data are sparse and the
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Gaussian approximation with constant smoothing factor h finds it difficult to

approximate the data. We choose to restrict our fitting to a fiducial interval

in time t1 < c < t2 = 1 < c < 5. Both the theoretical model P (c|s) and

the PDE likelihood curves are renormalized so that they integrate to unity

in the fiducial interval.

5.1 Iterative Determination of the Smoothing Factor

The expression h ≈ n−1/(d+4) clearly is meant to give a smoothing factor

that decreases slowly with increased statistics n. It is expected to be true

on average over the whole distribution. However, the exponential distribution

under consideration has event densities that vary by orders of magnitude as a

function of the time variable c. In order to obtain a function h(c) that takes

into account this variation, we first work out a PDE with constant h and then

use the number densities obtained thus [7] to obtain h(c) as per the equation

h(c) =

(
n PDE(c)

(t2 − t1)

)−0.6

(47)

The equation is motivated by the consideration that a uniform distribution

of events between t1 and t2 has a pdf = 1/(t2 − t1) whereas the real pdf is

approximated by PDE. The function h(c) thus obtained is used to work out a

better PDE(c). This process is iterated three times to give the best smoothing

function.

We generate n=1000 events in the fiducial interval. If now we were to super-

impose a Gaussian with 500 events centered at c=2.0 and width=0.2 on the

data, the PDE estimator will follow the data as shown in Figure 2. This shows

that the PDE estimator we have is adequate to reproduce the data, once the
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smoothing parameter is made to vary with the number density appropriately.

Fig. 2. Figure shows the histogram (with errors) of 1000 events in the fiducial

interval 1.0 < c < 5.0 generated as an exponential with decay constant s=1.0. with

a superimposed Gaussian of 500 events centered at c=2.0 and width=0.2. The PDE

estimator is the (solid) histogram with no errors.

The smoothing function h(c) for the events in Figure 2 is shown in Figure 3.

It can be seen that the value of h increases for regions of low statistics and de-

creases for regions of high statistics. Superimposed is the constant smoothing

factor obtained by the equation h ≈ 0.5n−1/(d+4) = 0.5n−0.2, with n being the

total number of events generated, including those outside the fiducial volume.
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Fig. 3. The variation of h as a function of c for the example shown in Figure 2. The

variation of the smoothing parameter is obtained iteratively as explained in the text.

The flat curve is a smoothing factor resulting from the formula h ≈ 0.5n−1/(d+4).

5.2 An Empirical Measure of the Goodness of Fit

The negative log-likelihood ratio NLLR ≡ −logeLR at the maximum likeli-

hood point now provides a measure of the goodness of fit. In order to use this

effectively, one needs an analytic theory of the sampling distribution of this

ratio. This is difficult to arrive at, since this distribution is sensitive to the

smoothing function used. If adequate smoothing is absent in the tail of the

exponential, larger and broader sampling distributions of NLLR will result.

One can however determine the distribution of NLLR empirically, by gen-

erating the events distributed according to the theoretical model many times

and determining NLLR at the maximum likelihood point for each such dis-
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tribution. The solid histogram in figure 4 shows the distribution of NLLR for

500 such fits. This has a mean of 2.8 and an rms of 1.8. The dotted histogram

shows the corresponding value of NLLR for the constant value of smoothing

factor shown in figure 3. This distribution is clearly broader (rms=2.63) with

a higher mean(=9.1) and thus has less discrimination power in judging the

goodness of fit than the solid curve. We now fit the same exponential back-

Fig. 4. The solid curve shows the distribution of the negative log likelihood ratio

NLLR at the maximum likelihood point for 500 distributions, using the iterative

smoothing function mechanism. The dashed curve shows the corresponding distri-

bution in the case of a constant smoothing function.

ground distribution with different numbers of Gaussian events superimposed

on an exponential background. Table 1 shows the results of the fit. When a

Gaussian of 500 events with width 0.2 and mean 2.0 is superimposed on the

exponential distribution of 1000 events, a value of NLLR=189 is obtained
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while trying to fit for the exponential using the unbinned maximum likelihood

method. This is 103σ away from the mean of the NLLR distribution shown

in figure 4 with the iterated smoothing function. A 3σ effect is observed when

the number of events in the Gaussian is 85. Figure 5 shows the generated

events, the PDE and the fitted curve for this case.

Let us note that it is possible to make a cumulative function from the solid

histogram in figure 4 and estimate the probability that NLLR exceeds the

observed value, just as we do with χ2 tests. We have also performed a binned

χ2 fit to an exponential over the same histograms, with the data in the fiducial

region binned over 41 bins. The resulting value of χ2 for 39 degrees of freedom

are shown in the last column in table 1. At the 3σ point for the unbinned

method, the binned method yields a χ2 of 42 over 39 degrees of freedom,

which may be considered a good fit. This implies that the unbinned method

may have more discriminating power against bad fits than the binned one.

It is worth noting however that the binned fit is over two parameters (the

number of events and the slope) whereas the unbinned fit being considered

here is only over a single parameter, namely the slope.

We now can fit the exponential data (with no superimposed Gaussian bumps)

and compute the value of the likelihood ratio LR = P (c|s)
P (c)

as a function of

the parameter s about the maximum likelihood point. Figure 6 shows this

function, which has the maximum value at s = 1.019. Note, however, that

LR, a dimensionless quantity, is not the likelihood distribution of s, which has

to have the dimensions of 1/s.
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Table 1

Number of Unbinned fit Unbinned fit Binned fit χ2

Gaussian events NLLR Nσ 39 d.o.f.

500 189. 103 304

250 58.6 31 125

100 11.6 4.9 48

85 8.2 3.0 42

75 6.3 1.9 38

50 2.55 -0.14 30

0 0.44 -1.33 24

5.3 Determination of the a priori Likelihood P(s)

In order to obtain the likelihood distribution of s, P (s|cn), we need to under-

stand better P (s), the a priori distribution of s. We are in a position to do

this, since we have identified P (c) to be the distribution of data, and P(s) and

P(c) are linked by the equation

P (c) =
∫

P (c|s) × P (s)ds (48)

We are in the process of using the a posteriori information contained in the

data pdf P (c) to infer the a priori function P (s). Before we use equation 48

to calculate P(s), let us make the following observations. Using equation 31,
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Fig. 5. Figure shows the histogram (with errors) of 1000 events in the fiducial

interval 1.0 < c < 5.0 generated as an exponential with decay constant s=1.0.

with a superimposed Gaussian of 85 events centered at c=2.0 and width=0.2. The

PDE estimator is the (solid) histogram with no errors. The data are fitted with a

goodness of fit that is 3σ away from the average value of NLLR. The continuous

curve shows the fit to an exponential.

we can write

P (s|cn) = P (s) × LR = P (s) × P (cn|s)
P (cn)

(49)

As we increase n, the number of events sampled, in the limit n → ∞ we

expect the a posteriori probability P (s|cn) to tend towards the delta function

δ(s−s∗) where s∗ is the true value of s. This is because P (s|cn) is the likelihood

distribution of s and we expect to determine the true value of s with infinite

precision in this limit. However, the ratio P (cn|s)
P (cn)

will tend towards unity in this
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Fig. 6. Figure shows the likelihood ratio LR = P (c|s)
P (c) as a function of the fitted

parameter s. The maximum likelihood point is at s = 1.019.

limit (for a good fit), since for each data point ck, the theoretical pdf P (ck|s)

and the data pdf P (ck) will be close to each other. The only way out of this is to

allow P (s) to depend discretely on n and let the distribution P (s) → δ(s−s∗)

as n → ∞. We can see the need for this further, using equation 48. In the

limit n → ∞, the data pdf P(c) will have the form P (c|s∗), where s∗ is the

true value of s, if it fits the theoretical model. Then the only solution for

equation 48 is again P (s) = δ(s − s∗).

To repeat, the only way out of this dilemma, is for the a priori probability

distribution P (s) to be dependent on n and tend towards a delta function as

n → ∞. If we are solving a Bayes theorem problem for n data points, then

the a priori function P (s) for that problem will be written as Pn(s) indicating

that it comes from a discrete familiy of probability distributions that depend
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on n. Nothing further is known about Pn(s) a priori except that it is a pdf in

s and that the pdf depends discretely on n.

5.3.1 Rewriting the Bayes Theorem Equations

The Bayes theorem equations have to be re-written to take into account this

change. Equation 31 now becomes

LR,n =
P (s|cn)

Pn(s)
=

P (cn|s)
P (cn)

(50)

Equation 33 remains as is and equation 34 becomes

LR,n =
P (s|cn)

Pn(s)
=

P (s|c1)

P1(s)
× P (s|c2)

P1(s)
. . . × P (s|cn)

P1(s)
(51)

where we have also added the subscript n to the likelihood ratio LR to indicate

its dependence on n. The recursive chain rule can now be rewritten as

LR,k =
P (s|ck)

Pk(s)
=

i=k∏
i=1

P (ci|s)
P (ci)

(52)

LR,l =
P (s|cl)

Pl(s)
=

i=l∏
i=1

P (ci|s)
P (ci)

(53)

LR,k+l = LR,k × LR,l (54)

=
P (s|ck)

Pk(s)
× P (s|cl)

Pl(s)
=

P (s|ck+l)

Pk+l(s)
=

i=k+l∏
i=1

P (ci|s)
P (ci)

(55)

where we have two sub-samples of k and l events which are being combined

to form a total number of k + l events.

5.3.2 An Ansatz for Pn(s)

The expression for P (c) in equation 48 can be thought of as the theoretical

prediction for P (c) and the PDE estimator is the experimental measurement

23



of P (c). Then, one can write,

P pred(cn)

P exp(cn)
=

∫ P (cn|s)
P PDE(cn)

× Pn(s)ds (56)

=
∫
LR,n(s) × Pn(s)ds =

∫
P (s|cn)ds = 1 (57)

with the last expression following from Bayes theorem. There are two ways

the last equation
∫

P (s|cn)ds = 1 can be satisfied. Either the likelihood ratio

LR,n(s) = 1 or if

Pn(s) =
1∫ LR,n(s)ds

≡ 1

2λ
(58)

It is very difficult for LR,n(s) to equal unity even at the maximum likelihood

value, since the experimental PDE estimator in the denominator is subject

to statistical fluctuations. Equation 58, however, gives us an expression for

the a priori likelihood Pn(s). Pn(s) is the value of the a priori probability

distribution at the true value of s. Since
∫

Pn(s)ds = 1, we can satisfy this

with a functional form for Pn(s) being a step function θ(s|µ) such that

with s1 = µ − λ (59)

and s2 = µ + λ (60)

Pn(s) ≡ θ(s|µ) = 0 if s < s1 or s > s2 (61)

Pn(s) ≡ θ(s|µ) =
1

2λ
if s1 ≤ s ≤ s2 (62)

and the value of µ, the mean of the distribution, is totally unknown. Let us

note that it is possible to write down an equation such as equation 58 only due

to the fact that we are able to compute a dimensionless quantity such as the

likelihood ratio LR,n(s) and this becomes possible only due to the concept of the

PDE estimator for P (c) introduced in this paper. The integral in equation 58

has thus the dimensions of s giving Pn(s) the dimensions of s−1 as required.
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As n increases, the value of λ decreases, since the distribution P (cn|s) sharp-

ens. This has the effect of narrowing Pn(s) in accordance with the discussion

above. It is important to realize that there is only one true value of s, and the

Bayesian a priori probability Pn(s) refers to the value of Pn(s) at that true

value, which, according to our ansatz, equals 1
2λ

. The data does not result

from an admixture of probable values of s, but from a single true value of s.

So Bayes theorem becomes,

P (s|cn) × P (cn) = P (cn|s) × Pn(s) = P (cn|s) ×
1

2λ
(63)

yielding

P (s|cn) =
P (cn|s)
P (cn)

× 1

2λ
=

LR(s)∫ LR(s)ds
=

P (cn|s)∫
P (cn|s)ds

(64)

The last equation in 64 results from the fact that the PDE estimator for P (c)

cancels both in the numerator and denominator. Having obtained P (s|cn), one

can proceed to calculate the statistical quantities associated with s, namely the

mean, mode, median, variance, errors and limits, in a rigorous fashion. We note

here that P (s|cn) is obtainable only with the use of of Bayes theorem, and our

ansatz for the Bayesian a priori likelihood P (s). The expression for P (s|cn),

the a posteriori likelihood for s does not depend on the PDE estimator of data,

but only on the theoretical function P (cn|s) evaluated at the data points. The

evaluation of Pn(s) and the goodness of fit criteria both require the usage of

the PDE estimator for the data pdf .

The ansatz for the a priori distribution for Pn(s) assumes a flat distribution

in Pn(s). This flatness may not be invariant under change of variables and

the consequences of this needs further investigation. It is important to stress
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again that Pn(s) in the Bayes theorem equations is the value of the a priori

distribution, at the true value of s. The value of the function at the unknown

true value of s is known to some statistical precision (= 1
2λ

). We then use

this to calculate the a posteriori distribution P (s|cn) which gives information

about the true value of s to some sttistical precision. Since we use the value of

the function Pn(s) at the true value of s only, we may not be sensitive to the

shape of Pn(s). Let us also note that we do not use the a priori distribution

explicitly for any calculations, since the information about the error of s is

contained in the normalized LR(s). Combining data from different datasets

may be done by multiplying likelihood ratios as shown in equation 55, without

the use of Pn(s).

We note in passing that the the values of λ are not large enough to span the

width of the likelihood distribution. Figure 7 shows the correlation between λ

and the ratio (3σ/λ), where σ is the rms of the likelihood ratio distribution,

for 500 configurations cn of 1000 events per configuration. At no point does the

ratio fall below unity, indicating that the likelihood curve is always broader

than the step function θ(s|µ). We may not blindly use the step function as the

a priori distribution, centered at the maximum likelihood value and do the

integral in equation 57, since it will chop off the likelihood ratio curve in the

tails. The step function can only be used after we feed it with a mean value µ.

The function in the integral in equation 57 is in fact a constant which equals

the value of Pn(s) at the true value of s. This value does not change as we

change s in the integral in equation 57. It is possible that the true value of

s is at the maximum likelihood point. It is also possible that it is at a value

3σ away, albeit with a reduced probability. The key point is that the true

value of s is either at the maximum likelihood point or at any of the other
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values at which the likelihood is non-zero. They do not simultaneously have

to be true. Hence we can integrate over the whole likelihood distribution with

Pn(s) = 1
2λ

without worrying about falling off the edge of the step function.

As one varies s, one is testing mutually exclusive hypotheses that the value of

s under consideration is the true value of s.

Fig. 7. Figure shows a scatter plot of λ, half the integral under the likelihood curve

vs. 3σ/λ, where σ is the width of the likelihood distribution for 500 configurations.

It is still instructive to see what happens when one supplies a distribution for

the mean value of the step function. The following section deals with the self-

consistency of our expressions, when one feeds in the a posteriori distribution

P (s|cn) for the mean value µ of the step function.
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5.3.3 The Bootstrap

If the mean value µ of the step function distribution has a probability distri-

bution P (µ), then one can write an expression for the joint probability density

of µ and s as

P (µ) × θ(s|µ)dµ ds =
P (µ)

2λ
dµ ds (65)

Fig. 8. The abscissa shows the variable s and the ordinate the variable µ, the mean

value of the θ function distribution. The hatched region shows the area over which

the probability distribution for s is non zero as a function of µ.

inside the shaded region in figure 8 and is zero outside. Integrating the above

equation along the s axis first (fixed µ), followed by integration along the µ

axis yields

∫
µ

P (µ) × dµ
∫
s

θ(s|µ)ds = 1 (66)
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We can now reverse the order of integraton, doing the µ integration first, which

yields

∫
s

1

2λ
ds

s+λ∫
s−λ

P (µ)dµ = 1 (67)

This can be re-written as

∫
s

1

2λ
g(s)ds = 1 (68)

where

g(s) =

s+λ∫
s−λ

P (µ)dµ (69)

These equations are true for any P (µ). We need to supply a P (µ), which is

the probability distribution of the mean value of the θ function. The obvious

candidate for P (µ) is clearly P (s|cn), the a posteriori distribution for the true

value of s. Since
∫

g(s)ds = 2λ, g(s) can be identified with LR(s), yielding

g(s) ≡ LR(s) =

s+λ∫
s−λ

P (s|cn)ds (70)

For small λ, we can Taylor expand the above integral yielding,

LR(s) ≈ 2λ × P (s|cn) (71)

yielding the desired result

P (s|cn) ≈ LR(s)

2λ
=

LR(s)∫ LR(s)ds
(72)

Also, from equation 68, we can identify P (s|cn) ≡ g(s)
2λ

, since g(s)
2λ

is the pro-

jection of the probability density for s in figure 8 along the s axis, computed
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after knowing cn. This again yields equation 72 and completes the bootstrap.

To summarize the arguments so far,

• We have made the ansatz that the a priori distribution for Pn(s) is 1∫
LR(s)ds

.

Such an ansatz gives us a distribution Pn(s) whose mean value is unknown

but whose width decreases with increased statistics. Both these properties

qualify it as a candidate for the a priori distribution. This step requires a

dimensionless LR and is only possible by the use of the experimental PDE ′s

for the goodness of fit test, introduced in this paper.

• We then supply it with a probability distribution for the mean value, which

is only known after we have analyzed cn. The candidate for the probability

distribution for the mean µ is P (s|cn), which is the a posteriori distribution

for the true value of s, and is the object of our quest. This is then used to

calculate the probabilty distribution of s.

• This yields the expression for P (s|cn) of equation 72 as well as a probability

density a posteriori for s that is consistent with the same equation.

This results in

P (s|cn) =
LR,n(s)∫ LR,n(s)ds

=
P (cn|s)∫
P (cn|s)ds

(73)

for the a posteriori likelihood for s.

In multi-dimensional parameter space, with α being the dimension of the

parameter vector s. the above equations are generalized as follows

Pn(s) =
1∫ LR, n(s)ds

≡ 1

(2λ)α
(74)

with integrals over s being carried out over α dimensions.
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6 Towards an Analytic Theory of Unbinned Likelihood Goodness

of Fit

Because the likelihood ratio LR(s) is invariant under transformation c → c
′
,

one can use variables c
′
such that

c
′
(c) =

c∫
0

P (c
′′|s)dc

′′
(75)

This leads to probability distributions P (c
′|s) such that

P (c
′|s) = P (c|s) × | dc

dc′ | = 1 (76)

and with the limits of the variable c
′
being 0 < c

′
< 1. These sets of transfor-

mations in multi-dimensions is known as the hypercube transformation. The

number density is constant in the hypercube which implies that we are not

sensitive to systematics associated with the smoothing parameter.

The theoretical curve is a constant =1 in this scheme. The experimental PDE

will also be close to being flat. The question to answer is “ What is the

distribution of the negative log likelihood ratio NLLR that results from the

statistical fluctuation of the PDE in the hypercube”? We leave this question

to a subsequent paper.

7 Conclusions

We have introduced a technique for estimating goodness of fit in unbinned

likelihood fits by the use of probability density estimators to obtain the a

priori likelihood distribution of the data. In addition to providing a measure
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of the goodness of fit in unbinned likelihood fits for the first time, this approach

enables us to obtain expressions for the a priori likelihood distribution of the

theoretical parameters and hence to derive expressions for the a posteriori

likelihood distributions of the theoretical parameters. We have shown that

the a priori likelihood of the theoretical parameters depends on the number

n of events being employed in the problem. We have emphasized that the a

priori likelihood is the value of the probability distribution at the true value

of s and this does not change as we change s, a posteriori, to calculate the

likelihood that s is the true value.

The approach outlined in this paper permits the rigorous calculation of errors

in the fitted quantites. It makes unnecessary the practice of “guessing” the a

priori likelihood distributions of parameters, a practice titled “Bayesianism”.

For the type of problems considered here, the a priori likelihood distributions

can be computed.

The techniques detailed here are extensible to arbitrary dimensions, even

though we have used a one-dimensional problem for illustrative purposes. In

the process of using probability density estimators, we have developed an al-

gorithm for iteratively improving the smoothing parameter as a function of

local number density.
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