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Quad Cooling Cell
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e Incoming Muons: 180 MeV /c to 245 MeV /c
e Magnetic Quadrupoles: k=2.88
e 35cm Liquid H Absorber: Energy loss ~ 12 MeV.

The same design as Study II 2.75m sFOFO cell.
e RF Cavity: Energy gain to compensate the loss.

200 MHz, ¢ = 30°.

W 30cm



COSY Simulation

Map Method

e The transfer map M is the flow of the system ODE.

Zr = M(Z,0),
where Z; is the initial condition, Z¥ is the final condition,
0 is system parameters.

e For a repetitive system, only one cell transfer map has to
be computed. Thus, it is much faster than ray tracing
codes (i.e. tracing each individual particle through the
system).

e The Differential Algebraic (DA) method allows a very ef-
ficient computation of high order Taylor transfer maps.

Differential Algebra

e arbitrary order
e very transparent algorithms; effort independent of order
e can keep system parameters in map

® ctc. etc.



Field Description in Differential Algebra

There are various DA algorithms to treat the fields of beam
optical systems efficiently.

For example, DA PDE Solver

e requires to supply only

— the midplane field for a midplane symmetric element.
— the on-axis potential for a solenoidal element,
a quadrupole, and a higher multipole.

e treats arbitrary fields straightforwardly.

— Magnet (or, Electrostatic) fringe fields:
The Enge function fall-off model

1
 14expla; +ag- (s/D)+ ... +ag- (s/D))
where D is the full aperture.

Or, any arbitrary model including the measured data
representation.

F(s)

— Solenoid fields including the fringe

— Measured fields: E.g. Use Gaussian wevelet represen-
tation

— Etc. ete.
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We use this model.


MQ Enge fall-off (measurement from LHC/HGQ lead end) for 60cm full aperture, 60cm length
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Fringe Field Effects

200 MeV /c Particles along the z-axis at every 2cm are tracked
through 100 Quad cells without cooling, nor acceleration.
Pictures: in the x - p,/po plane (frame size: 60cm x 0.6 rad).

Sharp Cut-off Fringe Field Model
( No Fringe Field Effect Consideration )

0. 600

0. 600

200MeV/ c NoCool FR O - 100cell s, ini:x-axis every 2cmin >'<, x-a



PEP /SLAC Quad Fringe Field Fall-off Model

= We use this model at the moment.

0. 600

200MeV/ c NoCool FR 3 - 100cell s, ini :\x axis every 2cmin x, X-a
S800 Q II Quad Fringe Field Fall-off Model
200MeV/ ¢ NoCool S800-Q2 FR 3 - 100cell s, ini:x-axis every 2cmin X, X-a



Treatment of Dynamics through Material

Deterministic Effects

e The mean energy loss.
= Compensate it by RF cavities.

e Include the effects in the transter map M.
Nondeterministic Random Effects

e Multiple scattering. Rys: A random kick in p, and p,,.
Gaussian distribution.

e Straggling. Rgi: A random kick in energy.
In the absorbers under consideration, the distribution fol-
lows Vavilov’s theory.

A set of particles is tracked via the map for the cell M:
then the Monte Carlo kicks Ry and Rg; are added.

% = (Ruis 0 Ry 0 M)(Z)

This procedure is iterated for the next cell, and so on.



Mean Energy Loss through Material

The Bethe-Bloch Formula

dFE 7 22
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dz Pam 32

= 27TNa7”‘ Mo

"

2m6V2/U2 Wmax

]2

-

. . classical electron radius, I : mean excitation potential,

maximum energy transfer in a single collision,

0 : density correction, C': shell correction.

Through Typical Muon Beam Absorber Material
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Average Energy Loss through Materials

Muon Beam Momentum (MeV/c)
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Pseudo Invariant Ellipses of Quad Cooling Cells

The Quad Cooling channel is a decoupled damped system.
By scaling the transfer map by v/D, ellipses can be restored.
( D: the determinant of the linear map. )

220 MeV/c. x - p,/po plane. xy=2, 4, ..., 30cm. For 100 cells.

No Cooling o

With Cooling
No Scattering

Pseudo Invariant
Ellipses w Cooling
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Energy Straggling
— Vavilov Energy Loss Distribution —

Through 35cm thick Liquid H

Vavilov Energy Loss Distribution : Liquid H 35cm
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Makino
The distributions are computed using the code vavidis by A. van Ginneken.


Muons through the Quad Cooling Cells

6D Simulation

Transversal Emittance starting from the beam acceptance.
po =200 MeV /c. The initial longitudinal emittance: 0.
The simulation includes multiple scattering and straggling.

X,y rms Emittances (starting from transversal beam acceptance), 200MeV/c

I I I I — Ix emittance

10000 a

8000 .

8 6000 | .
e
IS
IS

~—
4000 | \/z\'——.//'\'/}_
2000 a
O | | | | |
0 10 20 30 40 50 60

Number of Cells

13



Transversal Cooling and Equilibrium
in the Quad Cooling Channel

Refer to the file pout-steps.ps to see the behavior after each cell.

Cell # 3 Cell#6
04 I I I I I I I 04 I I I I I I I
0.3 4 - 0.3 | -
02 F R - 02 -
0.1 F  ++ f - 0.1 R R
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0.1 | P 0.1 -
0.2 T - 0.2 R
0.3 - 0.3 -
_04 | | | | | | | _04 | | | | | | |
-0.40.30.20.1 0 0.10.20.30.4 -0.40.30.20.1 0 0.10.20.30.4
Cell # 10 Cell # 20
0.4 T T T T T 1 0.4 T T T T T 1
0.3 - 03F -
0.2 F : 0.2 - + R
0.1 F : 0.1 R R
0 - 0+ Y -
0.1 | : 0.1 - R
0.2 | : 0.2 ﬁ% -
0.3 | - 0.3 | -
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Outlook

e Design the matching section.
e Propagate the realistic beam distribution.

e Simulate through from the capture through the cooling
channel.

° ..
e Treat the detailed absorber shape.
e ...

e Optimize the system.

e More details of RF cavities.

e More details of magnets.
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	) We use this model at the moment.



