Quad Cooling Channel Simulation

by COSY Infinity

Kyoko Makino

Univ. of Illinois at Urbana-Champaign

Working Group Members:
D. Errede, K. Paul (UIUC)
C. Johnstone (Fermilab)
M. Berz (MSU)

1. Quad Cooling Cell
2. COSY Simulation Technique
3. Some Results
4. Outlook

MuCool meeting, Fermilab, 1/24/2003
Quad Cooling Cell

4m Cell

- **Incoming Muons:** 180 MeV/c to 245 MeV/c
- **Magnetic Quadrupoles:** $k=2.88$
- **35cm Liquid H Absorber:** Energy loss ≈ -12 MeV. The same design as Study II 2.75m sFOFO cell.
- **RF Cavity:** Energy gain to compensate the loss. 200 MHz, $\phi = 30^\circ$.
COSY Simulation

Map Method

- The transfer map \mathcal{M} is the flow of the system ODE.

$$
\vec{z}_f = \mathcal{M}(\vec{z}_i, \vec{\delta}),
$$

where \vec{z}_i is the initial condition, \vec{z}_f is the final condition, $\vec{\delta}$ is system parameters.

- For a repetitive system, only one cell transfer map has to be computed. Thus, it is much faster than tracking codes (i.e. tracing each individual particle through the system).

- The Differential Algebraic (DA) method allows a very efficient computation of Taylor transfer maps.

Differential Algebra

- arbitrary order
- very transparent algorithms; effort independent of order
- can keep system parameters in map
- etc. etc.
Field Description in Differential Algebra

There are various DA algorithms to treat the fields of beam optical systems efficiently.

For example, **DA PDE Solver**

- requires to supply only
 - the midplane field for a midplane symmetric element.
 - the on-axis potential for a rotationally symmetric element.
- treats arbitrary fields straightforwardly.
 - Magnet (or, Electrostatic) fringe fields:
 The Enge function fall-off model

 \[
 F(s) = \frac{1}{1 + \exp(a_1 + a_2 \cdot (s/D) + \ldots + a_6 \cdot (s/D)^5)}
 \]

 where \(D \) is the full aperture.
 Or, any arbitrary model including the measured data representation.
 - Solenoid fields including the fringe
 - Measured fields: E.g. Use Gaussian wavelet representation
 - Etc. etc.
Field Profile of Various Magnets
60cm full aperture, 60cm length Magnets

MQ Enge fall-off (measurement from PEP/SLAC) for 60cm full aperture, 60cm length

MQ Enge fall-off (measurement from MSU/S800 Quad II) for 60cm full aperture, 60cm length
MQ Enge fall-off (measurement from LHC/HGQ lead end) for 60cm full aperture, 60cm length

Compare to: Ideal Solenoidal Magnet
60cm full aperture, 60cm length Magnet
200 MeV/c Particles along the x-axis at every 2cm are tracked through 100 Quad cells without cooling, nor acceleration. Pictures: in the $x - p_x/p_0$ plane (frame size: $60\text{cm} \times 0.6 \text{ rad}$).

Sharp Cut-off Fringe Field Model
(No Fringe Field Effect Consideration)
PEP/SLAC Quad Fringe Field Fall-off Model

⇒ We use this model at the moment.

S800 Q II Quad Fringe Field Fall-off Model

200MeV/c NoCool FR 3 - 100cells, ini:x-axis every 2cm in x, x-a
Treatment of Dynamics through Material

Deterministic Effects

- The mean energy loss.
 \[\Rightarrow \text{Compensate it by RF cavities.} \]
- Include the effects in the transfer map \(\mathcal{M} \).

Nondeterministic Random Effects

- Multiple scattering. \(\mathcal{R}_{MS} \): A random kick in \(p_x \) and \(p_y \).
 Gaussian distribution.
- Straggling. \(\mathcal{R}_{St} \): A random kick in energy.
 In the absorbers under consideration, the distribution follows Vavilov’s theory.

A set of particles is tracked via the map for the cell \(\mathcal{M} \);
then the Monte Carlo kicks \(\mathcal{R}_{MS} \) and \(\mathcal{R}_{St} \) are added.

\[
\tilde{z}_f = (\mathcal{R}_{MS} \circ \mathcal{R}_{St} \circ \mathcal{M})(\tilde{z}_i)
\]

This procedure is iterated for the next cell.
Mean Energy Loss through Material

The Bethe-Bloch Formula

\[
-\frac{dE}{dx} = 2\pi N_a r_e^2 m_e c^2 \rho \frac{Z z^2}{A \beta^2} \left[\ln \left(\frac{2m_e \gamma^2 v^2 W_{max}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right]
\]

\(r_e \): classical electron radius, \(I \): mean excitation potential,
\(W_{max} \): maximum energy transfer in a single collision,
\(\delta \): density correction, \(C \): shell correction.

Through Typical Muon Beam Absorber

![Average Energy Loss through Materials](image)
Pseudo Invariant Ellipses of Quad Cooling Cells

The Quad Cooling channel is a decoupled damped system. By scaling the transfer map by \sqrt{D}, ellipses can be restored. (D: the determinant of the linear map.)

220 MeV/c. $x - p_x/p_0$ plane. $x_0=2, 4, ..., 30$ cm. For 100 cells.

No Cooling

With Cooling
No Scattering

Pseudo Invariant Ellipses w Cooling
Energy Straggling
– Vavilov Energy Loss Distribution –

Through 35cm thick Liquid H

Vavilov Energy Loss Distribution : Liquid H 35cm

Distribution of Vavilov Random Numbers : 1e7 muons (200MeV/c) through Liquid H 35cm
Muons through the Quad Cooling Cells

Transversal Emittance starting from the beam acceptance. \(p_0 = 200 \) MeV/c. The initial longitudinal emittance: 0. The simulation includes multiple scattering and straggling.
Transversal Cooling and Equilibrium in the Quad Cooling Channel
Outlook

- Design the matching section.
- Send the realistic beam distribution.
- Simulate through from the capture through the cooling channel.
- ...
- Treat the detailed absorber shape.
- ...
- Optimize the system.
- More details on RF cavities.
- More details on magnets.
- ...