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Introduction: Approaches to Heat Removal

Two approaches under consideration:

➀ External cooling loop (traditional approach).

☞ Bring the LH2 to the coolant (heat removed in an external heat
exchanger).

➁ Combined absorber and heat exchanger.

☞ Bring the coolant, i.e. He, to the LH2 (remove heat directly within
absorber).
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Introduction (cont’d)

Advantages/disadvantages of an external cooling loop:

+ Has been used for several LH2 targets (e.g. SLAC E158).

+ Easy to regulate bulk temperature of LH2.

+ Is likely to work best for small aspect ratio (L/R) absorbers.

− May be difficult to maintain uniform vertical flow through the absorber.

Advantages/disadvantages of a combined absorber/heat exchanger:

+ Takes advantage of natural convection transverse to the beam path.

+ Flow in absorber is self regulating, i.e. larger heat input
⇒ more turbulence⇒ enhanced thermal mixing.

+ Is likely to work best for large aspect ratio (L/R) absorbers.

− More difficult to ensure against boiling at very high Rayleigh numbers.



Computational Fluid Dynamics (CFD)

Features of the CFD Simulations:

✓ Provides average convective heat transfer coefficient and average LH2

temperature for heat exchanger analysis.

✓ Track maximum LH2 temperature (cf. boiling point).

✓ Determine details of fluid flow and heat transfer in absorber.

⇒ Better understanding leads to better design!



CFD (cont’d)

Take 1: Results using FLUENT (M. Boghosian):

✓ Simulate one half of symmetric domain.

✓ Steady flow calculations.

✓ Heat generation via steady Gaussian distribution.

✓ Turbulence modeling (RANS) used for RaR ≥ 4× 108.

Take 2: Results using COA code (A. Obabko and E. Almasri):

✓ Simulate full domain.

✓ Unsteady flow calculations.

✓ All scales computed for all Rayleigh numbers.

➥ Investigate startup behavior, e.g. startup overshoot in Tmax.

➥ Investigate possibility of asymmetric flow oscillations.

➥ Investigate influence of beam pulsing.



FLUENT CFD Results

Average Nusselt Number vs. Rayleigh Number:

Nulam = 0.8114Ra 0.1931

Nuturb = 0.3079Ra 0.2184

Nu = 0.5754Ra 0.1979

Nu = 0.6789Ra 0.1859

NuJSME = 0.5042Ra 0.2126
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COA Formulation

Properties and parameters:

R = radius of absorber

Tw = wall temperature of absorber

q̇′′′(r) = rate of volumetric heat generation (Gaussian distribution)

q̇′ = rate of heat generation per unit length

ν = kinematic viscosity of LH2

α = thermal diffusivity of LH2

k = thermal conductivity of LH2

β = coefficient of thermal expansion of LH2



Governing Equations (T - ω - ψ formulation)

Energy equation:
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Vorticity-transport equation:
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Formulation (cont’d)

Initial and boundary conditions:

T = ω = ψ = vr = vθ = 0 at t = 0,

T = ψ = vr = vθ = 0 at r = 1.

Non-dimensional variables:
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Formulation – Non-Dimensional Parameters

Prandtl Number:

Pr =
ν

α

Rayleigh Number:
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Results – Flow Regimes

The following flow regimes are observed:

☞ Steady, symmetric solutions: RaR ≤ 1× 108

☞ Unsteady, asymmetric solutions: RaR ≥ 1× 109

Steady, symmetric results forRaR = 1.57× 107 (uniform heat generation):

Streamfunction: Temperature: Vorticity:
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Steady, Symmetric Results (cont’d)

Nusselt number versus θ for RaR = 1.57× 107 (uniform heat generation):

Nu vs. θ:
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Code Comparisons – Average Nusselt Number (N̄u)

Uniform heat generation (σ →∞) with Pr = 1:

RaR Mitachi et al. 1 FLUENT2 COA Code

1.57× 106 8.58 7.7 8.2

1.57× 107 14.0 11.9 12.0

1 Mitachi et al. (1986, 1987) - Results shown are from numerical simulations which
compared favorably with experiments.

2 From M. Boghosian’s correlation for Pr = 1.4, i.e. N̄uMB = 0.7041 ·Ra0.1864
MB .



Code Comparisons – Average Nusselt Number (N̄u)

Gaussian heat generation: σ = 0.25

RaR FLUENT1 COA Code

1× 108 16.4 15.6

1× 109 25.1 25.4

1 From M. Boghosian’s correlation, i.e. N̄uMB = 0.7041 ·Ra0.1852
MB .



Steady, Symmetric Results: RaR = 1× 108, σ = 0.25

Streamfunction: Temperature: Vorticity:
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Steady, Symmetric Results: RaR = 1× 108, σ = 0.25

N̄u vs. t: Tmax vs. t:
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Unsteady, Asymmetric Results: RaR = 1× 1010, σ = 0.25

N̄u vs. t: Nu vs. θ:
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Conclusions

➢ Current COA results compare very well with FLUENT results and limited
experimental data.

➢ Critical Rayleigh number for unsteady, asymmetric behavior is
RaR > 1× 108.

➢ No start-up overshoot in temperature at high Ra⇒ Heater not
necessary to improve performance of absorber as heat exchanger.



Current and Future Efforts

➢ Obtain solutions at higher Rayleigh numbers (target RaR ∼ 1014).

➢ Compare high-Rayleigh number COA solutions (unsteady) with
FLUENT results (steady RANS).

➢ Evaluate influence of σ, i.e. ratio of beam size to absorber size, on heat
transfer.

➢ Investigate influence of pulsed beam on fluid dynamics and heat
transfer.

Note that at 15 Hz, one pulse corresponds to 2.4× 10−7

non-dimensional time units (cf. ∆t = 10−8).


