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                 Phase Ionization Cooling of Muon Beam 
               2. Parametric resonance regime of ionization cooling 
 
1 Parametric resonance in transverse beam motion 
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• Resonance equations with 6D cooling and stochastic forces 
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• Reduction of the chromaticity detuning impact by the synchrotron oscillations 

  
• Requirements to the tune spreads 
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• Transverse coupling conditioning 
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1 Introduction 
 
 Table1 : Beam parameters after 6D cooling helical channel 

                   Parameter     Unit equilibrium 
rms value 

Beam momentum, p      MeV/c 100 

Synchrotron emittance, sε       mµ  300 

Relative momentum spread       % 2 

Beam width due to /p p∆       mm 1.5 

Bunch length      mm 11 

Transverse emittances, /ε ε+ −   mm-mr  100/300 

Beam widths, 1 2/σ σ       mm 4.5/2.8 

 
  
  
 
 
PIC combines the idea of a parametric resonance with the technique of ionization cooling 
to redistribute particles in phase space such that they become concentrated in a narrow 
phase angle.   
 
In general, a parametric resonance is induced in an oscillating system by using a 
perturbing frequency that is the same as or a harmonic of a parameter of the system.  
Physicists are often first introduced to this phenomenon in the study of a rigid pendulumi, 
where a periodic perturbation of the pivot point can lead to stable motion with the 
pendulum upside down.  Half-integer resonant extraction from a synchrotron is another 
example familiar to accelerator physicists, where larger and larger radial excursions of 
particle orbits at successive turns are induced by properly placed quadrupole (and 
octupole) magnets that perturb the beam at a harmonic of the betatron frequency.  In this 
case, the normal elliptical motion of a particle’s horizontal coordinate in phase space at 
the extraction septum position becomes hyperbolic, xx const′ = , leading to a beam 
emittance which has a wide spread in x  and very narrow spread in x′ . 
 
In PIC, the same principle is used but the perturbation generates hyperbolic motion such 
that the emittance becomes narrow in x  and wide in x′ at certain positions as the beam 
passes down a line or circulates in a ring.  Ionization cooling is then used to damp the 
angular spread of the beam.  Figure 1 shows how the motion is altered by the 
perturbation.  Figure 2 is schematic of the principle of ionization cooling showing how 
the angular divergence of the beam is damped.  Figure 3 is a representation of the 
emittance evolution showing how the beam becomes concentrated in a narrow phase 
space area. 
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Fig. 1 Comparison of particle motion at periodic locations along the beam trajectory in 
transverse phase space for: LEFT ordinary oscillations and RIGHT hyperbolic motion 
induced by perturbations at a harmonic of the betatron frequency. 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 2 Principle of transverse ionization cooling. A particle loses momentum in all three 
coordinates as it passes through an energy absorbing plate.  Only the longitudinal 
component is replaced by RF fields, thereby reducing the angular divergence of the 
particle, x′ . 
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Fig. 3 Phase space compression.  The spread in x  diminishes due to the parametric 
resonance motion while the spread in x′ diminishes due to ionization cooling.  The area 
of the phase space ellipse is reduced as the particles are restricted to a narrow range of 
phase angle, xψ . 
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2 A principal PIC model 
 
2.1 Hyperbolic dynamics and beam envelope 
 
First, we introduce the basic principles of phase ionization cooling.  Let there be a 
periodic focusing lattice of period λ  along the beam path with coordinate z .  As is well-
known, particle tracking or mapping is based on a single period transformation matrix, M  
(between two selected points, 0z  and 0z λ+ ), for particle transverse coordinate and angle, 

 0 0

x
z z

x x
M

x xλ+

� � � �
=� � � �′ ′� � � �    

with a similar expression for the y coordinate. 
 
The matrices xM  and yM  are symplectic or canonical, which means each has determinant 
equal to one.  Otherwise, the matrix elements are arbitrary in general. Thus, each can be 
represented in a general form convenient for later discussions as follows:  
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In particular, the optical period can be designed in a way that sin 0ψ = , (i.e. ψ π=  or 

2ψ π= ), then the evolving particle coordinate and angle (or momentum) appear 
uncoupled: 
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.
 

Thus, if the particle angle at point 0z  grows ( 0dΛ > ), then the transverse position 
experiences damping, and vice versa.  Liouville’s theorem is not violated, but particle 
trajectories in phase space are hyperbolic ( xx const′ = ); this is an example of a 
parametric resonance.  Exactly between the two resonance focal points the opposite 
situation occurs where the transverse particle position grows from period to period, while 
the angle damps.  
 
2.2 Phase cooling by using thin absorber plates   
 
    Stabilizing absorber effect  
If we now introduce an energy absorber plate of thickness w  at each of the resonance 
focal points as shown in figure 4, ionization cooling damps the angle spread with a rate 

cΛ .  Here we assume balanced 6D ionization cooling, where the three partial cooling 
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decrements have been equalized using emittance exchange techniques as described in 
reference [iii]: 

1
, 2 2 , 2 / ,

3
abs acc

c abs abs w
γ γ γ γ λ
γ γ
′ ′ ′ ′Λ = Λ Λ = = =  

where absγ ′ and accγ ′ are the intrinsic absorber energy loss and the RF acceleration rate, 
respectively.  If / 2d cΛ = Λ , then the angle spread and beam size are damped with 
decrement / 2cΛ : 
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Fig. 4 Conceptual diagram of a beam cooling channel in which hyperbolic trajectories 
are generated in transverse phase space by perturbing the beam at the betatron 
frequency, a parameter of the beam oscillatory behavior.  Neither the focusing magnets 
that generate the betatron oscillations nor the RF cavities that replace the energy lost in 
the absorbers are shown in the diagram. 
 
Reduction of phase diffusion  
The rms angular spread is increased by scattering and decreased by cooling,  
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Taking into account the continuity of x in collisions, the diffusion rate of particle position 
at the focus is a function of 0s z z= − , the local position of the beam within the absorber: 

( ) ( )
0 0

2
2 2( ) , ,

2 2 12z z

w w d w d
x s x s x x

dz dz
δ δ δ δ′ ′= − − ≤ ≤ = . 

 
Reduction of the equilibrium emittance  
Thus, in our cooling channel with resonance optics and correlated absorber plates, the 
equilibrium beam size at the plates is determined not by the characteristic focal parameter 
of the optics, / 2λ π , but by the thickness of absorber plates, w .   Hence, the equilibrium 
emittance due to angle scattering is equal to 
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The emittance reduction by PIC is improved compared to a conventional cooling channel 
by a factor 

3 2 3
acc
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w γπ π
λ γ

′
=

′
.  

 
Using the well-known formula for the instantaneous energy loss rate in an absorber, we 
find an explicit expression for the transverse equilibrium emittance (normalized) due to 
angle scattering that can be achieved using PIC:  
 

2

3 1 ( / 2 )
1

16 logx acc
eZ nr

λ πε β γ� � ′= +� �
� �

. 
 
Here Z and n are the absorber atomic number and concentration, mµ  the muon mass, 

er the classical electron radius, and β  is the muon velocity.  Here log is a symbol for the 
Coulomb logarithm of ionization energy loss for fast particles:  

2
22

log ln
p

h mµ

β
ν

� �
≡ −� �� �

� �
, 

with hν  the effective ionization potentialii.  A typical magnitude of the log is about 12 
for our conditions. The equilibrium emittance in the resonance channel is primarily 
determined by the absorber atomic concentration, and it decreases with beam energy in 
the non-relativistic region.  
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2.3 Compatibility of transverse phase cooling with emittance exchange 
  
Emittance exchange by using wedge absorber plates 
In order to prevent the energy spread growth in the beam due to the energy straggling in 
absorber, one has to use the wedge absorber plates and introduce the dispersion, i.e. make 
the beam orbit energy-dependent [   ].. Such dependence results from the beam bend by a 
dipole field (alternating along beam line). As usual, particle coordinate relatively a 
reference orbit can be represented as a superposition 
 

                       bxDx +∆= 2γβ
γ

                                                                                    (   ) 

 
at a condition that D and xb do not interfere on particle trajectory. In contrary, the 
absorber wedge arrow (i.e. the gradient of the plate width) must alternate coherently with 
the D oscillation. Considering at first the effects of energy loss in wedge absorber plates, 
we find a systematic change of particle energy and position xb at plates: 
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Here we introduced a parameter h as an effective height of the absorber wedge: 
 

                       
x

h
∂

′∂
′
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Thus, if the correlator   Dh-1 is positive, we gain a damping of the energy spread while the 
phase cooling decrement decreases. Let us assume an arrangement that makes the 
decrements of the three emittances equal to �/3 yet leaving equal the damping 
decrements of beam size and angle spread at absorber plates. Then, we obtain the 
following relationships: 
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    Transverse phase diffusion due to the energy straggling 
The dispersion introduced for longitudinal cooling will also be responsible for excitation 
of transverse emittances because of straggling, i.e. stochastic change of particle energy at 
scattering in on electrons in absorber [    ]. The related change of particle ‘free’ 
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coordinate xb after scattering in a plate can be found simply taking again into account the 
continuity of the total coordinate x:    
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Taking into account relationship (  ), we obtain formula for the total diffusion rate of 
particle “betatron coordinate” at plates as follows: 
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 2.4 The equilibrium for a monochromatic beam 
 
By combining the total phase diffusion from (  ) and (  ) and assuming the equalized 
cooling decrements as shown in (       ), we then obtain the equilibrium transverse size at 
plates and equilibrium emittance: 
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This expression to be valid requires hb <<σ . Let us introduce a ratio 

1)/( <<= hbσξ  
and rewrite equation (  ) as 
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As one can see now, the straggling impact on transverse emittance is insignificant, if 
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at a reasonably small chosen � value. If this condition is satisfied, then we return to the 
expression for minimum emittance of the phase cooling as in (  ). 
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                              3. Longitudinal cooling  
 
3.1 Basic equations 
 
Considering the longitudinal cooling accompanying the resonance transverse cooling 
(PIC), we assume a periodic system of RF resonators installed in correlation with a 
periodic system of magnets that provide beam focusing required for PIC and dispersion 
for an optimum emittance exchange as described above. For certainty and simplicity 
sake, assume a plane curved beam orbit, though the plane of beam bend interchanges 
periodically between horizontal to vertical polarization for a symmetric emittance 
exchange. Then, there are the equations of longitudinal particle motion in terms of energy 
and RF phase deviation from the reference (equilibrium) particle, as follows: 
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Here )(zΕ  is effective RF electric field amplitude including an average but also 
alternating component, aγδ ′  is energy loss fluctuation (straggling), and K is the bend 
curvature. We assume that the beam bend at absorber plates and RF resonators sections is 
zero or negligible. To solve these equations, we use the expansion of the transverse 
coordinate according to equation (  ), then average the equations along the beam path. We 
will perform the averaging, accounting for the second order terms on alternating parts of 
E1(z) and �(z): 
 

                     );(~
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γγβ
ηη

γγβ
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(
1

2323 +−=+=−≡ KDKD  

Let us temporarily neglect the stochastic absorber effects in equations (  ). If, as usual, we 
replace the field amplitude E1 (z) and compaction factor )(zη by their average values, 1Ε  
and η , we then obtain a conventional type of equations of particle motion in RF field i.e. 
synchrotron oscillation in RF bucket: 
 

                              
,
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γηωϕ
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To take into account the effects of the alternating parts, one has to distinguish between 
the systematic and periodic change of both variables, γ  and ϕ : 
 
                              ;~γγγ +∆=∆        ϕϕωτϕ ~+==  = )~( ττω +                                   (  ) 
 
 In first approximation, the alternating parts of particle energy and phase can be found by 
integrating the alternating dynamical parts in equations (  ) and (  ): 
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Here we introduced the alternating integrals such that ,~~̂
11 Ε=′Ε    .~~̂ ηη =′  Let us consider 

now γ∆  and τ  as new variables; substituting them to equations (  ) and (  ), we obtain 
equations for these variables as follows: 
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Here we use a notation dzΛ  for the longitudinal hyperbolic tune 
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This term may play an important role when either η or both η and 1Ε  appear small or 
zero. By organizing interference between alternating of η and 1Ε , one can effectively 
introduce damping in phase motion and provide phase cooling. There also are two 
stochastic terms in equation for phase τ  caused by transverse-longitudinal coupling.  
Considering that the longitudinal cooling is performed in parallel to the transverse phase 
cooling at condition (  ) and assuming 6/Λ=Λ dz , we obtain the following final equations 
of the longitudinal cooling: 
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Based on these equations, the equilibrium solution for energy spread and bunch length in 
general case is found and analyzed in Appendix. Below, we find equilibrium in two 
characteristic situations: cooling along isochronous line (i.e. )0=η  at ,01 =Ε  and 
cooling in RF bucket. 
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                                                     3.2 Hyperbolic longitudinal cooling 
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3.3 Longitudinal cooling in RF bucket 
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Since two components of adiabatic invariant (  ) are equal in average, we then obtain 
solutions for equilibrium energy spread and bunch length: 
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Considering the equilibrium emittance as function of parameter ,
1Εω

η
 we find that it 

takes minimum value at   
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                          Phase Ionization Cooling 
     2. Parametric resonance regime of ionization cooling 
 
 
 
 
   In the consideration above we assumed the diagonal form of 2D transformation matrix 
between the absorber plates as shown in equation (     ). This assumption leads 
immediately to the hyperbolic beam evolution at absorber plates, reduction of phase 
diffusion and equilibrium emittance. Now, we will consider a resonance method to 
realize the hyperbolic dynamics in one of two planes of a focusing channel. 
 
1 Parametric resonance in transverse beam motion 
 
Parametric resonance at a homogeneous focusing 
 Let there be a focusing force in x plane the characteristic of which is composed of a 
constant part corresponding to oscillation frequency kx and a small alternating part 
oscillating along beam path with a frequency 2k : 
 
                         x ′′ 0)2sin21(2 =−+ xkzk x ζ , 
 
whereζ = const «1  is the frequency modulation parameter.  Let us represent the 
oscillator motion in terms of “slow” variables )(),( zbza which would be constant at 

:0=ζ  
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Apparently, a and kb represent particle coordinate and angle in x-plane, respectively, at 
points of the beam orbit where 0sin =kz , while at points 0cos =kz the coordinate and 
angle are correspondently represented by b and ka. Resolving these equations on the 
variables a and b: 
 

                           
,cos)/(sin

,sin)/(cos

kzkxkzxb

kzkxkzxa

′+=

′−=
 

 
we find the derivatives a′ and ,b′  by taking into account the equation of motion for :)(zx   
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Here we introduced a notation for frequency detune, :ν   
 
                                               2 =ν 1)/( 2 −kk x .  
 
Thus, we derived the equations of motion in terms of slow variables a and b. The 
coefficients of these equations are periodic with a period k/π . We assume now that both  
the parameters,ζ and ,ν are small, then we can approximate change of a and b during a 
single period by simple integrating the equations over one period at a =const, b = const 
on the right, then we find:   
                       
                          ),2)(2/();2)(2/( abbbaa νζπνζπ −=∆−−=∆   
 
or, in terms of the effective differential equations, 
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These equations can also be obtained by an immediate averaging the equations (  ) on z. 
     Assume now for certaintyζ › 0, and let us observe the oscillator behavior dependence 
on detuneν . At ,0=ν  the beam experiences an exponentially increasing focusing at the 
points 0sin =kz , i.e. at the middle between two successive maximum and minimum of 
the focusing strength (see figure    ), in other words – at the points where the focusing 
strength is equal to its average magnitude, yet decreases, or at points of phase advance 

�45  after the points of maximum focusing strength. Correspondently, the beam size 
grows while angle spread damps at points .0cos =kz Thus, at the exact resonance we 
observe the hyperbolic dynamics identical to that introduced in part 2.1.  
  
 
                              
 
  Parametric resonance at a lumping focusing 
   The hyperbolic dynamic regime, actually, does not require for its realization a 
homogeneous focusing but can be arranged, as well, in a periodic lattice by implicating 
the parametric resonance technique. …  
More text and formulas 
 
4D parametric resonance in an axi-symmetrical focusing channel 
More text and formulas 
 
2 Basic equations of resonance cooling 
 
Resonance equations with 6D cooling and stochastic force 
More text and formulas 
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Detuning factors: 
• Angle aberration 
• Non-linearity 
• Chromaticity 
• Energy-transverse emittance correlation in RF bucket 

 
More text 
 
 
The constant and alternating components of the beta-function spreads 
 
                                          βββ ~+∆=∆  
 

• β∆ is constant function of the adiabatic invariants  

• β~  alternates with periods of the: 
       1) focusing lattice; 
       2) energy oscillation in the RF bucket (if chromaticity is not compensated) 

More text 
• Requirement to the constant beta spreads 
 

             β
β
β

3
Λ<<∆               

More text 
• Equilibrium phase aberration due to β∆ : 
 

 

             
ββ

βψ
Λ

∆≈∆ 3  

 
Could it be compensated after PIC? 
 
More text 
 
• Effect of the alternating parts   

 
                              ;~ψψ =∆         βψ ~~ =′  
  
More text 
 
 
  
3 Phase damping and beam equilibrium  
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4 Detuning compensation designs 
 
Versions under study: 
 

A) Alternating solenoid channel 
• Low bend and dispersion for emittance exchange 
• No compensation for chromaticity 
• Use energy-transverse emittance correlation in RF bucket 
•  Use solenoid fringe non-linear field to compensate for angle aberration 

detune 
Strong phase shrinkage is estimated 
 

B) Solenoid interchange with chicanes 
• Chromaticity compensated 
• Sextupoles in chicanes to compensate for angle aberration and non-

linearity 
• Low dispersion in solenoids for emittance exchange 
 

Better phase shrinkage can be expected? 
 

C) Continuous helical channel 
• Solenoid 
• Helical dipole + quad +sextupole + octupole (compensate for 

everything…) 
• Make two helical tunes equal (or ratio ½) 
•  Use wedge absorber 
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i http://monet.physik.unibas.ch/~elmer/pendulum/parres.htm 
 
ii L. D. Landau and E. M. Lifshits, Theoretical Physics v. 8, Electrodynamics of 
continuous media 1960 QC 518.L23. 
 


