Status Report on Neutrino Factory Acceleration Schemes

J. Scott Berg
Brookhaven National Laboratory
NFMCC Friday Meeting
24 February 2006
Acceleration Schemes

- Dogbone RLA to 5 GeV
- Linear non-scaling FFAGs, 5–10 GeV and 10–20 GeV
 - Not discussed here
- NuFactJ scheme
- Isochronous FFAGs
Dogbone RLA

- Full linear design exists
 - Needs to be converted into real terms, costed
 - Compare cost per GeV to FFAGs
- Misalignment and gradient error sensitivity studied
 - Orbit distortion manageable with 1 mm orbit errors
 - Quad fields tolerances 0.2%
- Next steps
 - Add sextupoles to get chromatics right
 - Look at beam with finite energy spread
NuFactJ Parameters

- Need a description of the field in the FFAG
- NuFactJ report: description based on arcs of sector magnets, run in SAD
- Need to convert to

\[B(r, \theta) = B_0(\theta)(r/r_0)^k \]

\(B_0(\theta) \) piecewise constant
- Geometry determined, only specify fields
- For some lattices, no reasonable guess works
<table>
<thead>
<tr>
<th>Lattice number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{min} (GeV/c)</td>
<td>0.3</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>p_{max} (GeV/c)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Cells</td>
<td>32</td>
<td>16</td>
<td>64</td>
<td>32</td>
<td>64</td>
<td>120</td>
</tr>
<tr>
<td>Field index</td>
<td>50</td>
<td>15</td>
<td>190</td>
<td>63</td>
<td>220</td>
<td>280</td>
</tr>
<tr>
<td>Average radius (m)</td>
<td>21</td>
<td>10</td>
<td>80</td>
<td>30</td>
<td>90</td>
<td>200</td>
</tr>
<tr>
<td>Field (T)</td>
<td>1.8</td>
<td>2.8</td>
<td>1.8</td>
<td>3.6</td>
<td>5.4</td>
<td>6.0</td>
</tr>
<tr>
<td>β_F (mrad)</td>
<td>26</td>
<td>52</td>
<td>12.7</td>
<td>26</td>
<td>12</td>
<td>6.7</td>
</tr>
<tr>
<td>β_D (mrad)</td>
<td>18</td>
<td>36</td>
<td>9.3</td>
<td>18</td>
<td>9</td>
<td>5.3</td>
</tr>
<tr>
<td>θ_F (deg)</td>
<td>17</td>
<td>26</td>
<td>10.5</td>
<td>16</td>
<td>10</td>
<td>6.8</td>
</tr>
<tr>
<td>Packing fraction</td>
<td>0.45</td>
<td>0.46</td>
<td>0.45</td>
<td>0.45</td>
<td>0.43</td>
<td>0.46</td>
</tr>
<tr>
<td>μ_x (deg)</td>
<td>120</td>
<td>131</td>
<td>132</td>
<td>154</td>
<td>157</td>
<td>67</td>
</tr>
<tr>
<td>μ_y (deg)</td>
<td>61</td>
<td>103</td>
<td>33</td>
<td>46</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>L_0 (m)</td>
<td>2.060</td>
<td>2.120</td>
<td>4.325</td>
<td>3.229</td>
<td>5.046</td>
<td>5.668</td>
</tr>
<tr>
<td>$2L_F$ (m)</td>
<td>1.104</td>
<td>1.065</td>
<td>2.041</td>
<td>1.575</td>
<td>2.169</td>
<td>2.685</td>
</tr>
<tr>
<td>L_D (m)</td>
<td>0.382</td>
<td>0.367</td>
<td>0.747</td>
<td>0.544</td>
<td>0.813</td>
<td>1.062</td>
</tr>
</tbody>
</table>
My Versions of NuFactJ Lattices

- Try to fit the tunes, assuming those were chosen carefully
- Can’t do this by just varying fields: degeneracy due to scaling
- Vary β_F, B_D, keeping β_0 fixed
My Versions of NuFactJ Lattices
Parameter Table

<table>
<thead>
<tr>
<th>Lattice number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{min} (GeV/c)</td>
<td>0.3</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>p_{max} (GeV/c)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Cells</td>
<td>32</td>
<td>16</td>
<td>64</td>
<td>32</td>
<td>64</td>
<td>120</td>
</tr>
<tr>
<td>Field index</td>
<td>50</td>
<td>15</td>
<td>190</td>
<td>63</td>
<td>220</td>
<td>280</td>
</tr>
<tr>
<td>r_0 (m)</td>
<td>21</td>
<td>10</td>
<td>80</td>
<td>30</td>
<td>90</td>
<td>200</td>
</tr>
<tr>
<td>β_F (mrad)</td>
<td>27.24</td>
<td>57.38</td>
<td>13.25</td>
<td>27.68</td>
<td>12.41</td>
<td>8.16</td>
</tr>
<tr>
<td>$2r_0\beta_F$ (m)</td>
<td>1.144</td>
<td>1.148</td>
<td>2.119</td>
<td>1.661</td>
<td>2.234</td>
<td>3.266</td>
</tr>
<tr>
<td>B_F (T)</td>
<td>1.958</td>
<td>3.078</td>
<td>1.992</td>
<td>3.938</td>
<td>5.978</td>
<td>6.215</td>
</tr>
<tr>
<td>β_D (mrad)</td>
<td>16.76</td>
<td>30.62</td>
<td>8.75</td>
<td>16.32</td>
<td>8.59</td>
<td>3.84</td>
</tr>
<tr>
<td>$r_0\beta_D$ (m)</td>
<td>0.352</td>
<td>0.306</td>
<td>0.700</td>
<td>0.490</td>
<td>0.773</td>
<td>0.767</td>
</tr>
<tr>
<td>B_D (T)</td>
<td>-2.619</td>
<td>-3.950</td>
<td>-2.821</td>
<td>-5.525</td>
<td>-8.040</td>
<td>-11.946</td>
</tr>
<tr>
<td>$2r_0\beta_0$ (m)</td>
<td>2.275</td>
<td>2.167</td>
<td>4.334</td>
<td>3.250</td>
<td>5.056</td>
<td>5.672</td>
</tr>
</tbody>
</table>
My Versions of NuFactJ Lattices
Magnet Parameters and Cost

- Machine costs are huge (non-scaling FFAGs: \(\lesssim 100 \) PB each stage)
- Magnet apertures are large
- Fields are very high
- Note: no cavities in cost!

- RF systems used
 - 0.75 MV/m average over ring, air gap, 5–10 MHz
 - First ring may be variable frequency
 - New type of magnetic alloy core
 - All this needs more careful specification, R&D, costing
- RF cost will be a significant additional cost
<table>
<thead>
<tr>
<th>Lattice number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_F (m)</td>
<td>1.125</td>
<td>1.088</td>
<td>2.111</td>
<td>1.640</td>
<td>2.225</td>
<td>3.257</td>
</tr>
<tr>
<td>r_F (cm)</td>
<td>58.3</td>
<td>75.0</td>
<td>54.1</td>
<td>59.7</td>
<td>52.9</td>
<td>45.0</td>
</tr>
<tr>
<td>x_F (cm)</td>
<td>-35.5</td>
<td>-51.6</td>
<td>-32.9</td>
<td>-37.3</td>
<td>-34.0</td>
<td>-41.1</td>
</tr>
<tr>
<td>L_D (m)</td>
<td>0.345</td>
<td>0.288</td>
<td>0.696</td>
<td>0.482</td>
<td>0.770</td>
<td>0.766</td>
</tr>
<tr>
<td>r_D (cm)</td>
<td>52.2</td>
<td>67.2</td>
<td>48.1</td>
<td>52.1</td>
<td>47.4</td>
<td>41.2</td>
</tr>
<tr>
<td>x_D (cm)</td>
<td>-40.6</td>
<td>-60.5</td>
<td>-40.4</td>
<td>-45.7</td>
<td>-41.4</td>
<td>-48.5</td>
</tr>
<tr>
<td>Cost (PB)</td>
<td>281</td>
<td>355</td>
<td>396</td>
<td>527</td>
<td>1153</td>
<td>1410</td>
</tr>
</tbody>
</table>
My Impressions from Conversations

- These designs were just supposed to be “typical”
- Constrained to fit inside 50 GeV proton ring
- Nobody did anything beyond the SAD model
- RF systems are all R&D projects
FFAGs on Tokai Campus

FFAG-I
0.3-1 GeV/c

FFAG-2
1-3 GeV/c

FFAG-3
3-10 GeV/c

FFAG-4
10-20 GeV/c

MSR
20 GeV/c
Work was done on improving the high energy (10–20 GeV/c) FFAG lattice

- FODO lattice
- Two versions
 - Same number of cells, higher field index, smaller ring
 - Larger ring, more cells even higher field index

I ran the lattices based on a hard edge model

Cost reduced significantly from NuFactJ design
- Apertures and fields both much lower
- Still high
- Cost can be improved by increasing cells
 - Need to fold decays in as usual
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells</td>
<td>180</td>
<td>120</td>
</tr>
<tr>
<td>Field index</td>
<td>670</td>
<td>330</td>
</tr>
<tr>
<td>Reference radius (m)</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>Ends (m)</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>D angle (deg)</td>
<td>0.438</td>
<td>0.63</td>
</tr>
<tr>
<td>D length (m)</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>D field (T)</td>
<td>5.795</td>
<td>7.738</td>
</tr>
<tr>
<td>F angle (deg)</td>
<td>0.562</td>
<td>0.87</td>
</tr>
<tr>
<td>F length (m)</td>
<td>1.36</td>
<td>1.42</td>
</tr>
<tr>
<td>F field (T)</td>
<td>-3.636</td>
<td>-4.857</td>
</tr>
<tr>
<td>Drift length (m)</td>
<td>2.35</td>
<td>1.97</td>
</tr>
<tr>
<td>L_F (m)</td>
<td>1.362</td>
<td>1.422</td>
</tr>
<tr>
<td>r_F (cm)</td>
<td>20.4</td>
<td>23.5</td>
</tr>
<tr>
<td>x_F (cm)</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>B_F (T)</td>
<td>7.664</td>
<td>9.764</td>
</tr>
<tr>
<td>L_D (m)</td>
<td>0.928</td>
<td>0.918</td>
</tr>
<tr>
<td>r_D (cm)</td>
<td>17.8</td>
<td>20.5</td>
</tr>
<tr>
<td>x_D (cm)</td>
<td>-10.9</td>
<td>-12.8</td>
</tr>
<tr>
<td>B_D (T)</td>
<td>-7.282</td>
<td>-9.560</td>
</tr>
<tr>
<td>Cost (PB)</td>
<td>284</td>
<td>373</td>
</tr>
</tbody>
</table>
2002 LBNL Lattice Cost vs. Cells

![Graph showing the relationship between cost (in PB) and number of cells.]
New Lattices, not Analyzed as Yet

- There is a 10–20 GeV doublet scaling lattice (early 2003)
 - Expect cost improvement
 - Still waiting on specs for this
- Lowest energy lattice corrected to normal conducting
 - Need to work out costing for that
- New proposal by Mori: 10–20 GeV singlet spiral sector
 - Normal conducting, 100 m radius, 50 cm orbit excursion
 - Passive extraction: orbit jump
Next Steps

- Need to work out details of a working scheme for all stages
 - Analyze all the schemes I currently have
 - Lattices other than first and last probably need to be defined
 - Optimized to some extent for cost
 - Need to define RF systems

- Need some costing information
 - Normal-conducting scheme at low energy
 - All RF systems

- Start to do more complete simulations
Isochronous FFAG Scenario (Rees)

- Avoid time of flight problems: act like a linac, make machine isochronous
- Two stages: 3.2–8, 8–20 GeV
- Field description
 - Original description based on constructing multiple linear lattices, connecting appropriately
 ★ Resulting field is nonlinear
 - I fit fields using cubic spline
 ★ Good fit
 ★ No excess oscillations
 ★ Extrapolates well
 - Note highly nonlinear fields
5-Cell Lattice

O bd(-) o F(±) o BD(+) o F(±) o bd(-) O

2.4 0.45 0.5 0.62 0.5 1.26 0.5 0.62 0.5 0.45 2.4 m
Field Fits for Isochronous FFAG
Isochronous FFAG: Analysis

- Time of flight variation is exceptionally small
 - Factor of 10 below natural value
- In my computation, tunes go unstable at high energy
 - Possible cause: Rees uses second-order edge effect which I don’t
- Tracking results (Méot)
 - Beam loss at high energy end
 - Appears to come from hitting a resonance
 - Note it occurs just where I say the lattice goes unstable
 - Highly nonlinear fields at high energy could also be driving it into the resonance
Time of Flight in Isochronous FFAG

![Graph showing the relationship between Relative Time of Flight per Cell (ps) and Kinetic Energy (GeV).]
Tunes in Isochronous FFAG

![Graph showing the relationship between kinetic energy and cell tune for horizontal and vertical tunes.](image-url)
Isochronous FFAG Beam Loss

Transmission rate & E/20 Gev vs. cavity #

1st run, Transmission rate = 0.16%

2nd run, Transmission rate = 11%

3rd run, Transmission rate = 14%
Isochronous FFAG
Evolution in Tune Space
Isochronous FFAG
Observations, Recommendations

- Machine is very fussy:
 - Tiny changes in lattices (0.1% change in lengths) has substantial effect on time of flight
 - Small end effects give drastic change in tunes
- Probably related to very nonlinear fields, especially at high energy
 - Could possibly relax this: certainly room in time of flight
 - Amplitude dependence of time of flight will give big contribution to TOF anyhow
 - Could consider reducing energy range
- Notice “wiggles” in time of flight
 - More automated design method would take this out
 - May also improve performance
Isochronous FFAG Tasks

- Next, try to do some costing
 - Since lattice unstable at high energy, will have to make guesses for beam sizes there.
- Still want to add insertions
 - Short cells in arcs, longer cells in straights to fit RF
 - May reduce cost
 - Matching tricky
 - Get lattice without insertions working first