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The Magnetic Cooling Channel 

 A long solenoid with superimposed transverse fields (dipole, quadrupole, 
sextupole) arranged to make the reference particle move in a helical orbit 
as it moves down the solenoid.  

 The technology of these helical dipole magnets is well known (Brookhaven − 
spin control in RHIC). For initial ionization cooling of a muon beam, the helical 
magnets will require a larger aperture than has been used up to now 
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                   Parameter     Unit      Initial Middle ****)       Final 
Beam momentum, p  *)    MeV/c        100       100       100 
Solenoid field, B        T         3.5         8              15 

Cyclotron wave length, 2 /c ckλ π=  *)        m        0.60       0.26       0.13 
Helix period, 2 / kλ π=         m          1       0.44       0.22 
Helical magnet inner radius cm         30           12          7 
Transverse field at magnet        T         1.2         3          5 
Transverse field at beam center        T         0.5        1.25        2.1 
Helix quadrupole gradient      T/m         1.2        7.5         20 
Helix orbit radius, a   *)      cm         15          6          3 
Dispersion, D      cm         37         15        7.5 

Transverse beta functions, β+/β−      cm      16/26          6/10      3.2/5.2 
Accelerating RF field amplitude   MV/m        30         30         30 
Frequency, f= /2ω π     GHz        0.2        0.8         1.6 
Energy loss rate in absorber   MeV/m        20         20          20 

6D cooling decrement length, Λ−1       m                4          4          4 
Relative momentum spread       %         7.5             3             2        
Bunch length      cm         30             7.5            1.1        

Transverse emittances, ε+/ε−  cm x rad    1.7/1.        0.2/0.2     (1/3)10-2         

Beam widths, σ1/σ2      cm        8/5        1.8/1.1        0.45/0.28      
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Summary 

 Cooling in a helical dipole channel – single particle dynamics 

  momentum offset dependant path length − momentum cooling 

  transversely correlated beam − emittance exchange 

 Fields in a helical cooling channel – analytic solution 

 Cooling rates − analytic predictions vs GEANT4 simulation 

  6D pase-space compression − promise of 105, over 60 m channel 

  Multi-particle tracking studies with g4bl (work in progress) 

 Simplicity of the cooling scheme …. 
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Ring types considered 

Weak Focusing Scaling Rings:
Radial sectors with uniform magnetic fields ie

zero gradients.
Strong Focusing FFAG Scaling Rings:
Radial sectors with alternating field direction and 

magnetic field strength determined by the field 
exponent k. 
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Weak Focusing Scaling Rings 
Parameters

Horizontal and vertical focusing is given by the 
combination of body and edge focusing of the sector 
magnets. The essential parameters are:

Muon momentum of reference orbit, ie momentum of cooled 
beam
Number of magnet sectors
Magnetic field 
Relative angular width of magnets and drifts
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Strong Focusing Scaling Rings 
Parameters

Assumptions:
Inward and outward bending magnets have identical field 
profiles except the signs are opposite. Outward bends are 
horizontally focusing, inward bends are vertically focusing. 

Horizontal and vertical focusing is given by body and edge 
focusing of the sector magnets and by their gradients.  
The essential parameters are:

Muon momentum
Number of magnet sectors
Magnetic fields on reference orbit
Relative angular widths of F and D magnets and drifts (if any).

The geometry including edge angles can be derived from the above.
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Harold G. Kirk

Recalculation with ICOOL V2.66 
ICOOL V2.59 ICOOL V.266
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Harold G. Kirk

Reduced Radius Performance 
B = 2.6T  Po = 125 MeV/c B = 5.2T   Po = 250 MeV/c
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Harold G. Kirk

Merit Factor Comparison

RF at 25 MV/m
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B-Field

• Magnet 1.6 Tesla

4 concentric coils

Weak focusing

Azimuthally symmetric field

• Injection radius = 110 mm,

p = 202 MeV/c, 0.3 mbar hydrogen

• Anti-protons adiabatically spiral to

the center

• dE/dx cannot be too high

2
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Examining the 
Garren-Kirk Dipole Cooling Ring with Realistic Fields

Steve Kahn
Alper Garren
Harold Kirk
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Half Cell Geometry Description

rho=31.8

gamma=22.5

Xc=22.5 cm

Yc=22.5 cm

20 cm

Based on a Sketch 
from A. Garren
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Closed Orbit

Closed orbit trajectory 
for 250 MeV/c µ started 
at x=55.02994 cm.
Note that there is 
curvature in region 
between magnets since 
there is still a significant 
field.
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Field Along the Reference Path

Figure shows By along 
the 250 MeV/c reference 
path.

The blue curve 
indicates the field 
from the Tosca field 
map.
The red curve is the 
hard edge field.

Note the –0.5 T field in 
the gap mid-way between 
the magnets.
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90° Transfer Matrix

This is the transfer matrix for transversing a quarter turn:

This should be compared to the 2×2 matrix to obtain the twiss
variables:
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Twiss Variables Half Way Between 
Magnets

Parameter Tosca A. Garren Synch

µx 98.38° 99.8784°

βx 32.3099 cm 37.854 cm

αx -0.00124 0

µy 100.62° 92.628°

βy 53.9188 cm 56.891 cm

αy 0.0009894 0
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Using the Field Map

We can produce a 3D field map from TOSCA.
We could build a GEANT model around this field map 
however this has not yet been done.
We have decided that we can provide a field to be used 
by ICOOL.

ICOOL works in a beam coordinate system.  
We know the trajectory of the reference path in the global 
coordinate system.

We can calculate the field and its derivatives along this path.
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bn along the path
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Fourier Expansion of bn(s)

The bn(s) can be expanded with a Fourier series:

These Fourier coefficients can be fed to ICOOL to describe the field 
with the BSOL 4 option.
We use the bn for n=0 to 5.
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Storage Ring Mode

Modify Harold Kirk’s ICOOL deck to accept the Fourier description of 
the field.

Scale the field to 250 MeV/c on the reference orbit.
This is a few percent correction.

Verify the configuration in storage ring mode.
RF gradient set to zero.
Material density set to zero.

Use a sample of tracks with:
δx=±1 mm; δy=±1 mm; δz=±1 mm;
δpx=±10 MeV/c; δpy=±10 MeV/c; δpz= ±10 MeV/c;
Also the reference track.
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Spacial Deviations in Storage Mode

The figures show δx and δy for the 13 sample tracks.
Two tracks are lost.  The others stay in a range of δx and δy = ±2 cm.
Most of the track survive >100 m (25 turns).

The lost tracks are the two with δpz=± 10 MeV/c.
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Transverse Momentum Deviation in 
Storage Ring Mode

The figures show δpx and δpy deviations. 
They stay in the range ± 10 MeV/c.
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Now With RF

We now set the material of the absorber to gaseous H2 with 100 atm pressure.
We need to optimize the RF phase relative to the reference particle.
We must optimize the RF gradient such that the muon momentum is stable from 
period to period.
Figures show plots of Ez and pz vs. s for gradient of 20 mV/m and phase of 30°
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A Strong Focusing AG Lattice

Lattice consists of  alternating 
Horz. Defocusing and Horz.
Focusing with LHD = ½ LHF .
No drift cells between dipole
elements.

Parameters
12 cells
Bend angles 30o and –15o

Circumference = 6m
Bo = 2.6T   and Po = 250 MeV/c
Dispersion = 25 cm
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Strong Focusing Lattice Performance
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                                                                  Dec. 16, 2003 
 
Preliminary Conclusions of the Tucson Workshop     
 
1) Magnets are feasible for ring coolers at 2.6 T, 30 cm 
aperture, 60 cm radius. May be scaled to higher field 
magnets.  
 
2)Weak Focusing /Strong Focusing Ring. Continue 
studying on both options. 
 
3) Insertion of rf cells into dipole elements maybe feasible.  
Quarter wavelength coaxial rf cavities could do the job. 
 
4)Helical Solenoid. Very promising method for 6D cooling. 
 
5) We should consider designing and constructing a test 
muon ring cooler based on the gas filled model. 
 
5) 6D cooling continues to look promising. 
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