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The Magnetic Cooling Channel

L)

¢ A long solenoid with superimposed transverse fields (dipole, quadrupole,
sextupole) arranged to make the reference particle move in a helical orbit
as it moves down the solenoid.

% The technology of these helical dipole magnets is well known (Brookhaven —
spin control in RHIC). For initial ionization cooling of a muon beam, the helical
magnets will require a larger aperture than has been used up to now

Direct Wind Type
Ve W W W W e
_ { dﬂ —
-/ W R Ring Cooler Workshop, December 15-16, 2003 3



Miven Cotfohoraiion

6D Muon Cooling in a Helical Dipole Channel, Alex Bogacz et al

Parameter Unit Initial  Middle ™
Beam momentum, p MeV/c 100 100
Solenoid field, B T 3.5 8
Cyclotron wave length, A, =2z/k_ " m 0.60 0.26
Helix period, A =271k m 1 0.44
Helical magnet inner radius cm 30 12 7
Transverse field at magnet T 1.2 3 5
Transverse field at beam center T 0.5 1.25 2.1
Helix quadrupole gradient T/m 1.2 7.5 20
Helix orbit radius, a cm 15 6 3
Dispersion, D cm 37 15 7.5
Transverse beta functions, B./p- cm 16/26 6/10 3.2/5.2
Accelerating RF field amplitude MV/m 30 30 30
Frequency, f=w/27z GHz 0.2 0.8 1.6
Energy loss rate in absorber MeV/m 20 20 20
6D cooling decrement length, A™ m 4 4 4
Relative momentum spread % 7.5 3 2
Bunch length cm 30 7.5 1.1
Transverse emittances, ¢,/c_ cm x rad 1.7/1. 0.2/0.2 (1/3)102
Beam widths, c1/5; cm 8/5 1.8/1.1 0.45/0.28
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Summary

@ Cooling in a helical dipole channel — single particle dynamics

»  momentum offset dependant path length — momentum cooling

»  transversely correlated beam — emittance exchange

@ Fields in a helical cooling channel — analytic solution

@ Cooling rates — analytic predictions vs GEANT4 simulation

b ©D pase-space compression — promise of 10% over 60 m channel

»  Multi-particle tracking studies with g4bl (work in progress)

@ Simplicity of the cooling scheme ...
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RiIng types considered

0 Weak Focusing Scaling Rings:
Radial sectors with uniform magnetic fields ie
Zero gradients.

0 Strong Focusing FFAG Scaling Rings:
Radial sectors with alternating field direction and
magnetic field strength determined by the field
exponent k.



Weak Focusing Scaling Rings

Parameters

00 Horizontal and vertical focusing is given by the
combination of body and edge focusing of the sector
magnets. The essential parameters are:

0 Muon momentum of reference orbit, 1e momentum of cooled
beam

00 Number of magnet sectors
0 Magnetic field
O Relative angular width of magnets and drifts



Strong Focusing Scaling Rings
Parameters

0 Assumptions:

O Inward and outward bending magnets have identical field
profiles except the signs are opposite. Outward bends are
horizontally focusing, inward bends are vertically focusing.

0 Horizontal and vertical focusing is given by body and edge
focusing of the sector magnets and by their gradients.

O The essential parameters are:
O Muon momentum
0O Number of magnet sectors
0 Magnetic fields on reference orbit
O Relative angular widths of F and D magnets and drifts (if any).

O The geometry including edge angles can be derived from the above.
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Recalculation with ICOOL V2.66
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Reduced Radius Performance

B =2.6T Po=125MeV/c
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Merit Factor Comparison

RF at 25 MV/m
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B-Field

e Magnet 1.6 Tesla
4 concentric coils
Weak focusing
Azimuthally symmetric field

e Injection radius = 110 mm,
p = 202 MeV/c, 0.3 mbar hydrogen

e Anti-protons adiabatically spiral to

the center

e dE/dx cannot be too high




Examining the
Garren-Kirk Dipole Cooling Ring with Realistic Fields
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Half Cell Geometry Description

Based on a Sketch
from A. Garren

Yc=22.5cm

\
\

Dipole Cooler Ring
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Closed Orbit

Dipole Cooler Ring
Steve Kahn

Closed orbit trajectory
for 250 MeV/c u started
at x=55.02994 cm.

Note that there Is
curvature in region
between magnets since
there is still a significant
field.
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Field Along the Reference Path

* Figure shows B, along By along path |
the 250 MeV/c reference -
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the gap mid-way between
the magnets.

Dipole Cooler Ring
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90° Transfer Matrix

¢ This is the transfer matrix for transversing a quarter turn:

OX
X'
oy
oy’

[ —0.29145
—0.0287
0

0

31.965 0
—-0.289 0
0 —0.18336
0 —0.01823

0
0
52.9949

~0.1853 |

+ This should be compared to the 2x2 matrix to obtain the twiss

variables: {
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Twiss Variables Half Way Between
Magnets

——

Dipole Cooler Ring
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Using the Field Map

+ \We can produce a 3D field map from TOSCA.

= We could build a GEANT model around this field map
however this has not yet been done.

= \We have decided that we can provide a field to be used
by ICOOL.

e ICOOL works in a beam coordinate system.

+ We know the trajectory of the reference path in the global
coordinate system.

= We can calculate the field and its derivatives along this path.

Dipole Cooler Ring
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B0 alon ath

b, along the path
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Dipole Cooler Ring

Steve Kahn
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Fourier Expansion of b, (s)

¢ The b,(s) can be expanded with a Fourier series:

S

N-1 e 1T ik%
b, =R c.e T  Where Cn = ?J‘bn (s)e
k=0 0

* These Fourier coefficients can be fed to ICOOL to describe the field
with the BSOL 4 option.

¢ We use the b, for n=0to 5.

Dipole Cooler Ring
12/16/2003 Steve Kahn Page 16



Storage Ring Mode

+ Modify Harold Kirk’s ICOOL deck to accept the Fourier description of
the field.
= Scale the field to 250 MeV/c on the reference orbit.

e This Is a few percent correction.
+ Verify the configuration in storage ring mode.
= RF gradient set to zero.
= Material density set to zero.
¢ Use a sample of tracks with:
m  OX=x1 mm; oy=x1 mm; 6z=x1 mm;
= 0p,=110 MeV/c; 6p,=+10 MeV/c; dp,= +10 MeV/c;
= Also the reference track.

Dipole Cooler Ring
12/16/2003 Steve Kahn Page 18



Spacial Deviations in Storage Mode
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+ The figures show ox and 8y for the 13 sample tracks.
¢ Two tracks are lost. The others stay in a range of 6x and dy = 2 cm.
¢ Most of the track survive >100 m (25 turns).

= The lost tracks are the two with dp,=% 10 MeV/c.

Dipole Cooler Ring
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Transverse Momentum Deviation In
Storage Ring Mode

pts.px:pts.s {pts.s<100} | | pts.py:pts.s {pts.s<100} |
0141 0.01
0.12-
O 0.005
0.08—
0.06 - 0
0.04:—;
0.021 ; i : -0.005[:!
5], . i, .I N A4 I )
MR e UL ML) 3 258
B i B E M T T R !
_0.02[1 0.01
20 40 60 80 100 1] 20 40 60 80 100

* The figures show 6p, and dp, deviations.
¢ They stay in the range = 10 MeV/c.

Dipole Cooler Ring
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| pts.ez:pts.s {pts.s<100} |
x1

Now With RF
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+ We now set the material of the absorber to gaseous H, with 100 atm pressure.
+ We need to optimize the RF phase relative to the reference particle.
+ \We must optimize the RF gradient such that the muon momentum is stable from

period to period.

+ Figures show plots of E, and p, vs. s for gradient of 20 mV/m and phase of 30°
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Lattice consists of alternating
Horz. Defocusing and Horz.
Focusing with Lyp = Y2 Ly .
No drift cells between dipole
elements.

Parameters
12 cells
Bend angles 30° and —15°
Circumference = 6m
B,=2.6T andP, =250 MeV/c
Dispersion = 25 cm

NATIONAL LABORATORY
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A Strong Focusing AG Lattice
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e Strong Focusing Lattice Performance

Muon Collaboration

12 Sector Oct. 21, 03 Lattice: 250 MeV/c

50 X:mm'-rad b ' RF at 25 MV/m Over
g0 b Y mmerad FFAG-like Lattice

Z:mm 1 60% of circumference
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Dec. 16, 2003
Preliminary Conclusions of the Tucson Workshop
1) Magnets are feasible for ring coolers at 2.6 T, 30 cm
aperture, 60 cm radius. May be scaled to higher field

magnets.

2)Weak Focusing /Strong Focusing Ring. Continue
studying on both options.

3) Insertion of rf cells into dipole elements maybe feasible.
Quarter wavelength coaxial rf cavities could do the job.

4)Helical Solenoid. Very promising method for 6D cooling.

5) We should consider designing and constructing a test
muon ring cooler based on the gas filled model.

5) 6D cooling continues to look promising.
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