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1) E X B effects are important.

Magnetically insulated transmission lines work.

We need the MICE coupling coil.

A rotatable cavity would be very useful, and give basic data.

The design is tricky,
Moretti needs a challenge.
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Figure 1. A Cross-section View of the RF Solenoid from the Side



2) High pressures and dielectrics.
* Beam effects may be easier to study in synchrotron beams.

. Th%y are DC, which permits network analyzer measurements.
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3) Gas/dielectric breakdown theory

* Drift chamber physics and breakdown mechanisms have a lot in
commom.

* Much of this is in standard programs and references.

- Are tests with solids relevant?
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4) Field emission Microscopy

* This seems to be the best way to study emitters/breakdown sites.

b) Integrated FE

(Brodie Spindt JAP 90 (01) 768)

FIG. 4. FE apparatuses: (a) Scanning anode field emission microscope and
(b) integral field emission with a phosphor screen. (1) Reference light source
for sample positioning. (2) x/y/z-movable scanning FE Pt-Ir tip (radius —5
um). (3) x/y/z piezo step motors. (4) Charge coupled device camera for
motion monitoring. (5) Source-measure device (1100 V/10 mA). (6) Carbon
thin film emitter. (7) Computer controlled sample motion, current (A) and
voltage (V) monitoring. (8) High voltage supply 3000 V. (9) Phosphor
screen with variable separation d. (10) Spotwise electron emission. (11)
Electron stimulated fluorescence of the phosphor screen = emission site
density.




5) Atom Probe Tomography

* This is the ideal way to study high fields + materials.

- 21" century technology.
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Fig. 5. O/ND ratio from the 3D reconstructions of unbaked and
baked niobium tips. The stoichiometry of the oxide 1s deduced
from the profile. The profile clearly demonstrates that the
thickness of the oxide decreases after baking. The chemistry of
the oxide, however, does not change.



6) Beam loading

- This could be an issue for the small beams required by colliders.

» The bunch can only take energy from ( )
the part of the cavity that causally q
communicates with it, r ~ d. < >
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* This is effectively beam heating.



7) Nanofabricated SCRF Composites

- How structures fail
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8) The plasma physics of the discharge has not been explored.

* Inadense, metallic plasma, recombination radiation (called impurity radiation in
the fusion community) seems to be the dominant effect & is not well understood.

* Arcs happen fast, and ions don't drift far = very dense plasmas

+ An effort to understand arcs is underway with Tech-X
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Summary
» Accelerator science needs to understand rf gradient limits.

* I think the program centered at SLAC is starting in the wrong place
and going in the wrong direction.

* Unlike engineering development, a research program will have little
momentum, and primarily requires people interested in
understanding many mangy issues.

»+ SCRF, High Pressure, Magnetic fields, Vacuum, High and low f are all
part of the same field.



