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Final cooling channel
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Emittance exchange in high field solenoid



Possibility of using Low kappa HCC for
final cooling

Positive aspects in this channel:

* Reduce longitudinal beam size growth by emittance exchange in HCC
* It will be easy to build a matching section for low kappa HCC
* Hence, it will be easy to include RF structure
- Inside?! or Outside!?
- This study | assume the acceleration structure will be outside from HCC

(MANX type channel)




Transverse stability in low kappa HCC

Larmor motion in pure solenoid
T f1

Radial equation of motion with helical dipole

Larmor center
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Particle motion in stable orbit

Correct field gradient makes stabilize the transverse particle motipn




Beam parameters

Dispersion factor
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Important parameter to design HCC: l)7 q

Stability condition is

20+ K" ~_ 1) Aoy 1 2\
0 < D D < -(1-
('1%—%2 ) 4 ( 1 + k2

Above inequalities come from betatron motion in HCC
See eqs. (3.18) to (3.24) in Slava & Rol’s paper (PRSTAB 8, 041002 (2005))




Example

Higher bz — kappa > 1
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Stability area gets narrower in stronger solenoid condition




Stability condition with various kappa

Table[qgplot[x, Dhat = 1.8], {x, 0.0, 1.1, 0.1}]

K= o. K= 0.

Those plots indicate that a large stable phase space exists

in transverse plane ,




Dynamics in longitudinal direction

Emittance exchange is achieved by manipulating
the path length as a function of momentum




Time of flight in optimum HCC and pure
solenoid

In a pure solenoid channel, a tof of slow particle takes more
time to reach the other end of channel and vise versa for
fast particle

This picture is completely opposite in HCC
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Momentum slip factor in HCC
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Y. Derbenev & R. Johnson, PRSTAB 8, 0410020 (2005), Eq. (3.52)

For optimum cooling condition, momentum slip
factor is always positive

This condition can be realized even in low kappa
HCC




ToF in various kappa
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Adjusting field to optimize cooling
performance
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Proper condition can be seen from kappa = 0.4




Example result in kappa=0.2 MANX
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Conclusion

Investigate stable condition in HCC as a function of

kappa

HCC theory works well for transverse phase space
stability (checked not only me but also other people)

But, HCC theory did not well represent in longitudinal

phase s

Nevert

pace, especially for low kappa case

neless, we found the tuning knob to optimize the

HCC field even for low kappa case

Now fine tuning is on going




