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Introduction

• Cavities in specified magnetic fields do work

• But achieved fields are down by ”only” a factor of ≈ 2

• Is there a way to raise the damage threshold ?
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Two Related problems

• In both, damage probably caused by fatigue from repeated strains induced by
heating

• In both, it should be reduced by

– Choice of materials

– Lower initial temperature
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Choice of materials
• For both problems we seek

– Low coefficients of expansion

– High specific heat

– High thermal conductivity

• For the magnetic field problem

– Low density and resulting lower beamlet energy loss

• For the high frequency surface damage problem

– High electrical conductivity

Materials considered:

1. Copper

2. Beryllium for its very low density and experimental lack of damage

3. Aluminum for its lower density than copper

In each case we will consider

• Very pure materials with Relative Resistance Ratios (RRR) over 1000

• Less pure materials with Relative Resistance Ratios (RRR) around 100
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Problem 1) Strains due to Beamlets

∆T ∝
dE

dx

∫ t
o

Q(T )

Abeam ρ Cp(T )
dt

S ∝
dE

dx

∫ t
o

Q(T ) α(T )

Abeam ρ Cp(T )
dt

Where α(T ) is the coefficient of thermal expansion, and Abeam is the transverse
area of the beamlet at the surface, and Q(T ) is a factor to include thermal
diffusion that increases the transverse area where the heat is deposited

• We assume the rf pulse length t is NOT increased even when low temperatures
give longer decay times τ

• This is an approximate calculation because it ignores the variations in tem-
perature with lateral diffusion

– It is a good approximation if α(T )/Cp(T ) and Q(T) do not change much
over the range of T in the integration

– SLAC sees damage when ∆T ≈ 45 degrees starting from 273 deg. Over
this range these functions do not change much and the approximation is
good. It is less so at lower temperatures
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Correction Q(T ) for thermal diffusion

a) Q(T ) = 1 b) Q(T ) =
d(273)

d(T )
c) Q(T ) =

dx rbeam

d(T )2

where d, the thermal diffusion length:

d(T ) =

√

√

√

√

√

√

√

K(T )τ

ρCp(T )

• Fit to data had assumed a)

• But recent simulations suggest b) more likely at 805 MHz,

• c) gives breakdown independent of B Not as observed

e.g. 805 MHz: for B = 3 (T) E = 17 (MV/m) dx=100 (µm)
d=48 (µm) r¡10 (µm)
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Temperature Rises
∆

T

Initial Temperature K
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• Normalized to give ∆T of 45 degrees for Cu at room T

• This is case that caused damage in SLAC surface heating exp.
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Strains
S
tr

ai
n
×

10
5

Initial Temperature K

a) dx > dthermal < rbeam
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• Be has much less strain at room T

• Al somewhat less strain at room T

• In case a): no change with temperature

• cases b) and c) less strain at low T
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Relative rf gradients for same strain
G
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Observations

• At room temperature

– Aluminum damage at 1.4 times rf gradient Not enough

– Beryllium damage at 3 times rf gradient Enough

• If case a) rbeam > diffusion length (assumed in paper)

– No gain with lower operating temperature

• In most likely case b)

– Gain with Copper of ≈ 1.3 at 70 Ko Not enough

– Gain with Aluminum of ≈ 2 at 70 Ko Enough

– Gain with Beryllium of ≈ 4.5 at 70 Ko Not needed
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Conclusions on rf breakdown in magnets problem

• Beryllium is the ideal material

– Would probably solve the problem even at room temperature

– Would certainly solve it at nitrogen temperature

• Aluminum is significantly better than Copper

– If cold, it would probably solve the problem

– If multipacter is a problem, a thin copper layer would be ok

Advantages over Magnetic Insulation

• Pillbox cavities have better Shunt Impedance

• Pillbox cavities give more acceleration for same surface fields

• Muon transmission is better with less rapid field changes

– Simulations of RFOFO Guggenheim 6D cooling gives unacceptable losses

– A Neutrino Factory front end using magnetic insulation appears difficult
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Possible Experiments

1. Cool and test refurbished 805 MHz Pillbox Cavity to Nitrogen temperatures

2. Build and test an 805 MHz Al cavity at room and Nitrogen Temperatures

3. Build a Be faced 805 MHz cavity and test in ’non-flip’ field
not testable at low temperatures because of differential expansions
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Problem 2) Surface rf ohmic heating

• At frequencies of, and above, 10 GHz, with normal pulse lengths, breakdown
appears initiated when surface heating caused fatigue damage

• SLAC experiments show damage in soft copper when ∆T ≥ 45 degrees

Ohmic heating in skin depth:

dU

dA
= k1 H2

√

R(T ) f dt = k2 E2
√

R(T) f dt

H = local rf magnetic field, E = accelerating gradient, R(T ) = is electrical
resistivity

The heat is disipated in a thermal diffusion length depth d(T )

d(T ) =

√

√

√

√

√

√

√

K(T )τ

ρCp(T )

K(T ) is thermal conductivity, ρ is the density, Cp(T ) is specific heat,

τ = τ805









805(MHz)

f









1.5

where τ805 is taken to be 20 µ sec.
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Surface temperature and strain

• Assume rf pulse length τ not changed as a function of temperature, even
though the natural ”filling time” is

• Minimizes the cryogenic load from ohmic losses in the cavities

T (t) = T1 +
∫ τ
t=0

























k2 E2
√

R(T)

ρ Cp(T)
√

√

√

√

√

√

τ K(T)
ρ Cp(T)

























dt

where k2 is a constant, set to give 45 degree rise with SLAC parameters. The
resulting strain S is:

S =
∫ τ
t=0 α(T )

























k2 E2
√

R(T)

ρ Cp(T)
√

√

√

√

√

√

τ K(T)
ρ Cp(T)

























dt

where α(T ) is the expansion coefficient.
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Temperature rises
∆

T

Initial Temperature K
0 100 200 300 400

4

6
8

2

4

6
8

10.0

2

102

Copper(RRR=119)

Beryllium(RRR=100)

Aluminum(RRR=143)

15



Strains vs. Temperature
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Relative gradients for the same strain
G
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• No advantage of Al of Cu

• Big gain in cooling Cu

• Even greater gain with cold Be
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Conflict with CLIC resilts ?1

• CLIC observed no temperature dependence on a 30 GHz copper cavity excited
by an 8 nsec bunch train

• But their pulse length (8 nsec rise, immediate fall) was much less than:
a) 1.5 (µsec) as used by SLAC
a) a normal 3 × τ fill time, and assumed here
b) 70 nsec flat top, as required by CLIC

• Sami Tantawi (SLAC) will test a 12 GHz cavity with no surface fields2

1H. H. Braun et al; Phys Rev Letters; 90, 224801 (2003)
2S. G. Tantawi et al; Proc PAC07
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Conclusion on rf ohmic heating

• Significant suppression of damage, from cyclical surface ohmic heating, if a
Cu cavity is operated at lower temperatures.

• No gain from Aluminum

• No gain from Be at room temperature, but superior at low temperatures

• The gain by cooling Cu will soon be tested at SLAC using their cavity with
no surface electric fields

• For high frequency cavities (f > 10 GHz) this should translate into reduced
damage or higher operating gradients, especially for longer pulse lengths than
used in CERN test
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Appendix: Material parameters

• Assume Energy loss dE/dx, density ρ are independent of temperature

• Look at resistivity R(T ) for different purities and resulting RRR’s [R(273)/R(4)]

• Assume Thermal conductivity K(T ) ∝ T/R(T )

Temp (K)

L Thermal expansion (1/deg) × 105
C Specific heat (J/gm deg)
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Temp (K)
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