Recent Results of High Gradient Studies (at Argonne)
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NFMCC systems require superconducting linacs, which need R&D.
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ANL is starting a program to extend SCRF and NC gradients.

» This effort will involve Argonne Materials Scientists ( + local Universities) in
accelerator problems. Argonne effort is based around Atomic Layer Deposition.
So far, this is supported by internal Argonne funds.

* We have had great success with our initial efforts:

1 A new, and persuasive, model of high field Q-Slope in SCRF systems (IIT).

2 A new way to control SCRF surface chemistry.
3 Practical ways to simultaneously attack all the SCRF limits.
4 TIdeas on improving hormal conducting structures.

- Some results are published, others are coming:

- This talk will be an outline - details will come later.



A new model of losses in SCRF systems.
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* Q-Slope is an anomalous loss that appears
at high gradients in SCRF systems.

+ John Zasadzinski will
present a better
argument.
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We have demonstrated we can control the surface.

- Using Atomic Layer Deposition, Mike Pellin et. al. have shown that it is possible to
control the oxide composition and density in the near surface region of niobium.

- We are trying to coat a JLab cavity to show that this technique will produce
practical accelerator components.

This is an iterative process, there are many variables.

Mike Pellin should give a talk on this.



The main problem with SCRF is still Field Emissioh.
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Can all SCRF problems can be solved with ~50nm ALD coatings?
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Normal conducting systems ( u cooling, CLIC ) can also benefit.

- ~50 nm smooth coatings should also eliminate breakdown sites in NCRF.
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Uncoated Si AFM tip After 5nm ALD ZrO,
+30nm ALD Pt
Figure 3: Scanning Electron Microscope images of nearly
atomically-sharp tips, before and after coating with a total of
35nm of material by ALD. The tip, initially about 4 nm, has
been rounded to 35nm radius of curvature by growth of an ALD

film. Rough surfaces are inherently smoothed by the process of
conformal coating.

- Copper, however, is a hard material to deposit, and it may be necessary to study
other materials and alloys. Some R&D is required. This is underway.



