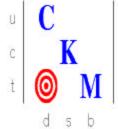
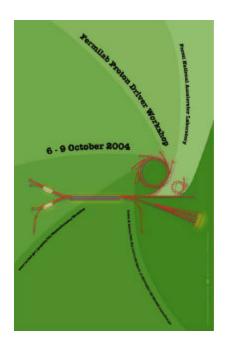
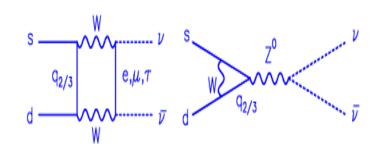
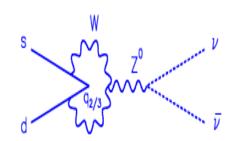

$K^+ \rightarrow \pi^+ \nu \nu$ at Fermilab

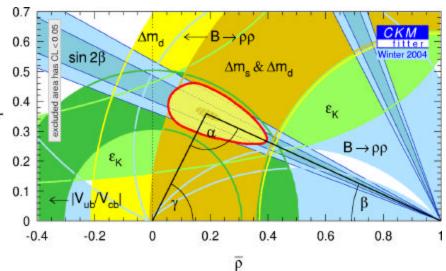

Steve Kettell, BNL October 7th, 2004 FNAL


- II. $K^+ \rightarrow \pi^+ \nu \nu$ at Fermilab.
- III. Longer term outlook.

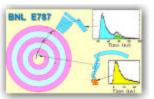


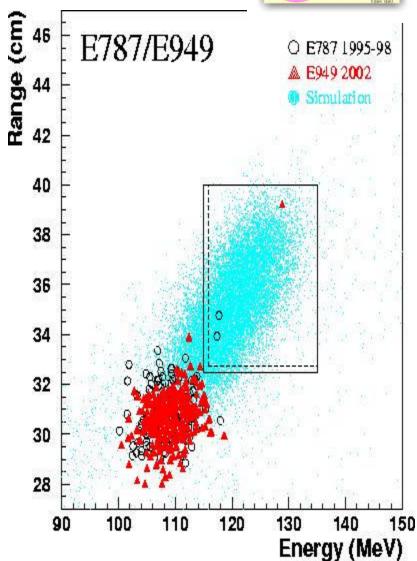
P940



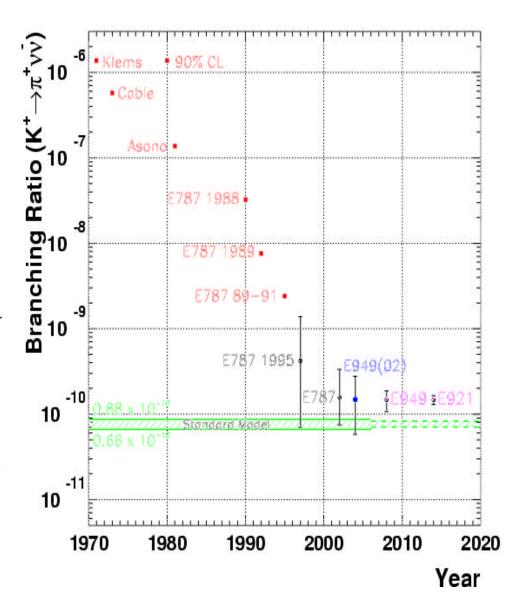

$K^+ \rightarrow \pi^+ \nu \nu$ Motivation


This decay is determined by loop processes and has reach for *new* physics at the EW scale and beyond.

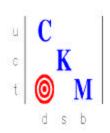

One of the Golden Modes for study of the CKM matrix and CP violation. The rate can be calculated precisely (~8% now→~5% future) from the fundamental SM parameters, and hence any deviation in the measured rate will be a clear signal for new physics. □ 0.4


$K^+ \rightarrow \pi^+ \nu \nu$ Status

E949 has observed a 3rd $K^+ \rightarrow \pi^+ \nu \nu$ event.


$$B(K^{+} \mathbb{R} p^{+} \mathbb{I} \mathbb{I}) = 1.47^{+1.30}_{-0.89} \cdot 10^{-10}$$
(SM: 0.8 '10⁻¹⁰)

- PRL 93 (2004) 031801
- Detector and collaboration ready to complete experiment but DOE has not supplied funding for the running time that they approved.
- Proposal to complete E949 submitted to NSF.



$K^+ \rightarrow \pi^+ \nu \nu$ History

- E787 discovered K⁺ $\rightarrow \pi$ ⁺νν and measured a BR twice the SM expectation
- BNL and FNAL developed a plan to fully exploit this kaon component of flavor physics with E949 and CKM.
- E949 was approved by DOE-HEP to exploit the investment in E787 and the expertise and proven detector to run at minimal marginal cost with RHIC. From the Director of DOE-HEP `It is highly desirable to smoothly transfer hardwon expertise from the AGS rare kaon decay program to the Fermilab Main Injector...'
- CKM was approved by FNAL (with BNL support and participation) to take the next step and push the measurement of $K^+ \rightarrow \pi^+ \nu \nu$ to the limits of theory.

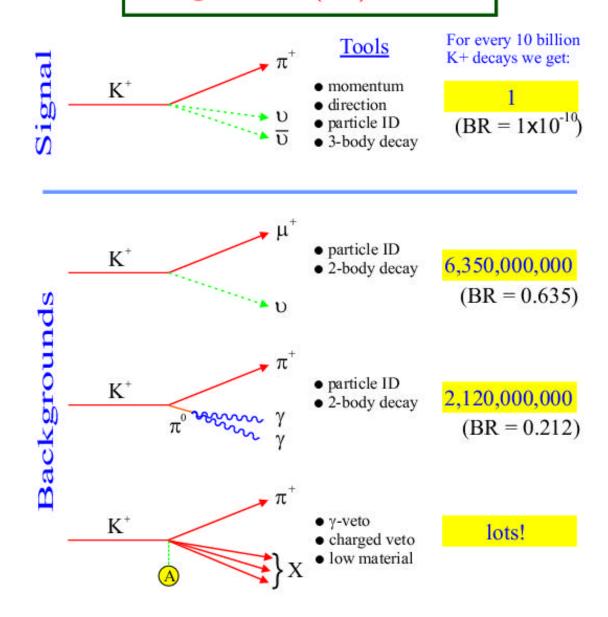
CKM Status and plans

- O CKM(E921) at Fermilab is an approved experiment to measure Br[K* ® p*mm] with 100 signal and <10 background in a high flux separated kaon beam at 22 GeV/c
- o P5 stops CKM Oct 2003

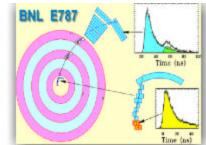
P5 judged "CKM to be an elegant world class experiment which based on present budgetary models should not proceed."

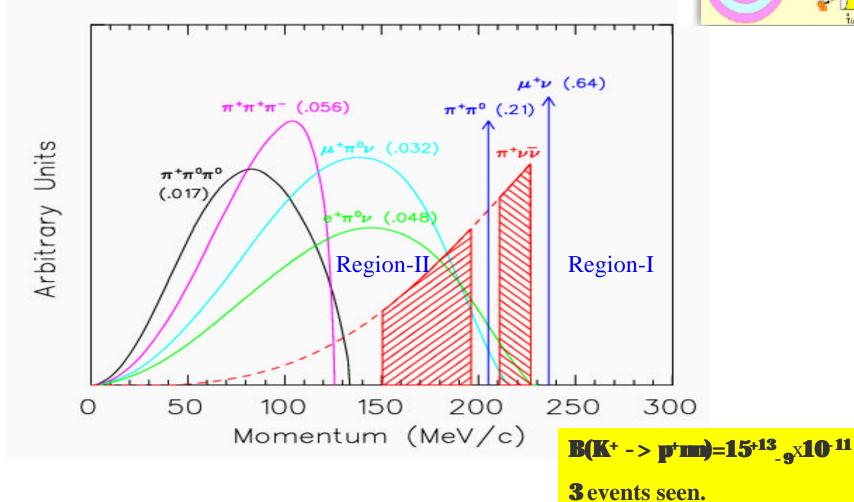
- o Adapt to an unseparated ~45 GeV/c beam in KTeV hall **P940**
 - Demonstration of μMegas in NA48 ® tracking in 230MHz tractable
 - Detectors other than beam tracker remain identical.
 - Vetoing photons gets easier ($E_{\pi^0} > 1 \text{ GeV } \otimes > 7 \text{ GeV}$)
 - Accidental π /p backgrounds?

Other Physics Measurements


o π^+ decay physics

- $\Gamma[\pi^+ \rightarrow e^+ \nu(\gamma)] / \Gamma[\pi^+ \rightarrow \mu^+ \nu(\gamma)]$ is calculated to 0.05% in the SM
- Helicity suppression of the dominant V-A and IB amplitudes
- $\pi^+ \rightarrow e^+ v \gamma$ Dalitz plot access to non V-A terms in hadronic weak current
- An excellent place to search for models like leptoquarks, multiple Higg, etc.


o Other K⁺ decay physics


- All the other K decays studies from the CKM proposal remain
 - K_{e3} , K_{e4} , $K_{\mu 3}$, $K_{\mu 4}$, $K^{+} \rightarrow \pi^{+} e^{+} e^{-}$, $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$
 - Lepton flavor violation $K^+ \rightarrow \pi^- \mu^+ \mu^+$, etc.
 - T odd correlations in $K^+ \rightarrow \pi^+ l^+ \nu \gamma$
- $\Gamma[K^+ \rightarrow e^+ \nu(\gamma)] / \Gamma[K^+ \rightarrow \mu^+ \nu(\gamma)], K^+ \rightarrow e^+ \nu \gamma$ in parallel with pion decays

Backgrounds a (the) Problem!

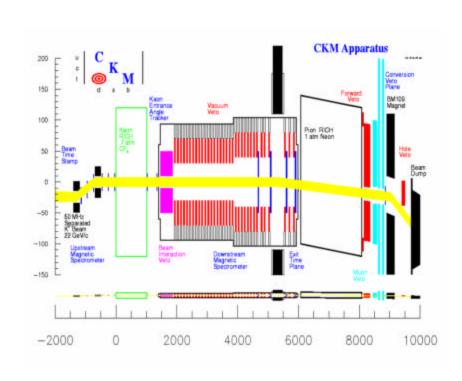
Stopped K⁺ Kinematics

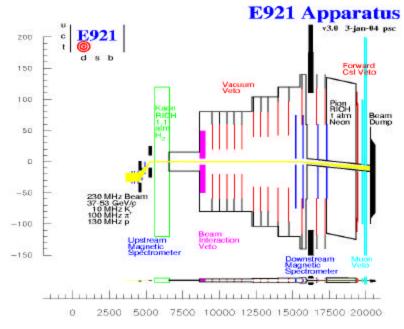
In-Flight Measurement of K^+ ® p^+

- Must measure K⁺ momentum to effectively recover restframe kinematics.
- Relatively large decay volume.
- Not possible to follow the π - μ -e decay chain.
- Decay occurs in vacuum, no low-energy K+A interactions, no complex energy loss mechanisms.
- * Kinematics *and backgrounds* of Region-I and Region-II are similar, leads to potentially higher total acceptance.
- High energy muons and photons from $K\mu 2$ and $K\pi 2$ are in principle easier to veto.
- Existing high performance Experiments: BNL E871 & E865 & KTeV & NA48.

New Technique: P940

O High Flux Un-separated 37-53 GeV/c Beam - 4% K⁺


- Proton / π^+ : 120 / 100, 230 MHz total, ~30 MHz/cm² in beam tracker. 1x1 cm² beam in decay volume.
- 10 MHz K⁺, 1.7 MHz decay in the accepted decay volume.
- 5 x10¹² 120 GeV proton /sec in slow spill from the Main Injector to produce the required K⁺ beam (17% of design intensity)
- Debunched proton beam required (~10% 53MHz ripple ok).


o Apparatus

- Decay in flight spectrometer with both velocity (RICH) and momentum (magnetic) spectrometer both both K^+ and π^+ .
- Significant requirements on photon vetoes, CsI ineff $< 1x10^{-6}$ @ high energy.
- All detector technologies used are well established
- Redundancy is critical to measure all backgrounds
- Exploit signal regions on **both** sides of the $K^+ \to \pi^+\pi^0$ background peak.

Apparatus

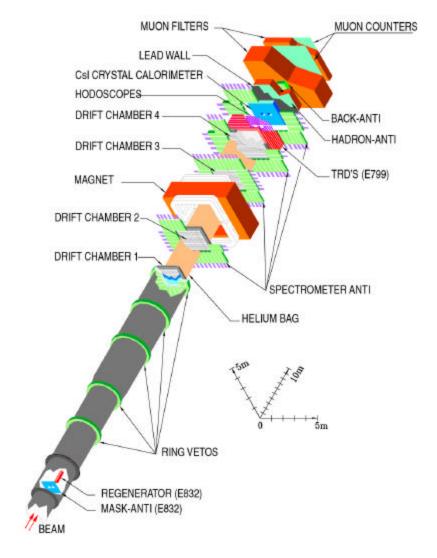
- o Decay in flight
- o Redundant high rate detectors and veto systems.
- o separated K+ beam at 22 GeV/c. Un-separated + beam at 37-53 GeV

P940: Exploiting the Legacy of the KTeV Detector.

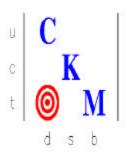
•Pure Csl Calorimeter:

(Energy resolution < 1% at $<E_g> = 10GeV$; **p**/e rejection of > 700)

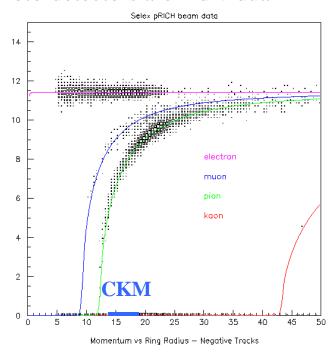
•Four drift chambers: resolutions: ~100mm

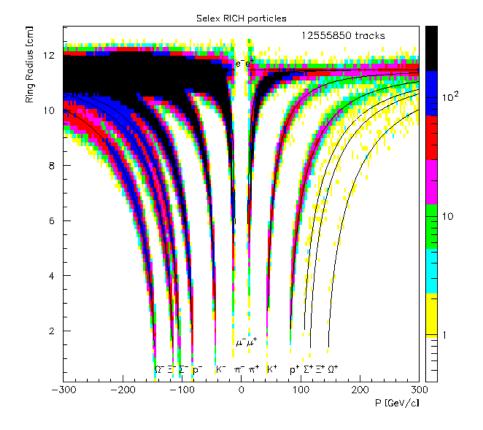

•Transition radiation detectors: (p/e rejection of > 200) [E799]

- Spectrometer magnet
- Photon veto rings
- •Intense beams: 5×10^{12} protons on target per spill $\rightarrow 5 \times 10^{9}$ kaons/spill (existing target station and beamline)

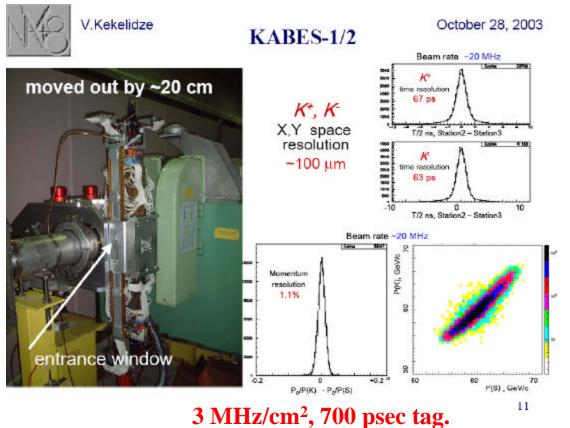

•KTeV $E_K \sim 70$ GeV: K_S : **ghct** ~ 3.5 m

K_L: gbct ~ 2.2 km


•P940 E_K ~ 45 GeV: K+: **ghct** ~ 0.3 km



RICH Based Velocity Spectrometer


- High rate high resolution
- Matched to momentum resolution
- Based on successful Selex RICH
- Photo-detectors are individual PMTs

The NA48 Beam Tracker: Ultra-high Rate Tracking.

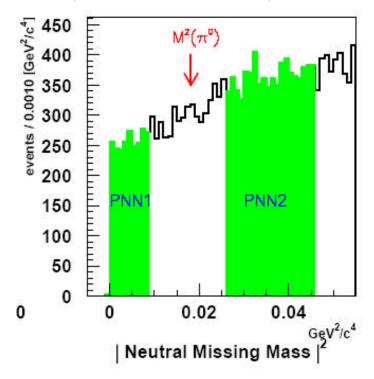
P3 12.71 ± 0.8874
P4 19.58 ± 0.7751
P5 85.11 ± 0.7181
P6 17.67 ± 0.8836
P7 23.48 ± 0.9066
P8 114.5 ± 0.9150
P9 14.20 ± 1.287
P10 62.54 ± 0.2897
P12 15.69 ± 0.2711
P13 15.56 ± 0.2964
P16 167.4 ± 0.2011
P15 15.56 ± 0.2964
P16 17.67 ± 0.8632
P17 188.5 ± 0.3695
P18 8.545 ± 0.6327

40 - 25 50 75 100 125 150 175 200
Insect

5 particles on one strip in 160 asec

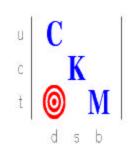
0.4075

55.99 ±


3 MHz/cm², 700 psec tag. No rate effects seen.

FNAL/NA48 collaboration on narrow gap KABES demonstrated x4 higher rate capability than needed by P940

P940 Acceptance



- o Acceptance was re-evaluated for P940. Decay fraction increased $13\% \rightarrow 16.5\%$
- o PNN2 acceptance conservatively estimated at 1.4x PNN1 pending more serious background studies
- o Nearly identical sensitivity as CKM for same 120 GeV beam incident.

parameter	CKM	E921(P940)
$K^+flux[MHz]$	30	10
beam-sec/year	0.75×10^{7}	0.75×10^{7}
years of data	2	2
sensitive K decays	5.8×10^{13}	2.5×10^{13}
nominal Branching ratio	1×10^{-10}	1×10^{-10}
taxes (other losses)	-15%	-15%
PNN1 (s+b)	$95 + \le 10$	$44 + \le 4$
PNN2	$(130 + \le 40)$	$62 + \le 20$
total	$95+ \le 10$	$106+\leq 24$
Br precision	< 11%	< 12%

P940 Backgrounds Studies

Background Source

•	K^+	\rightarrow	$\mu^{\scriptscriptstyle +}$	ν_{μ}
---	-------	---------------	------------------------------	-------------

•
$$K^+ \rightarrow \pi^+ \pi^0$$

•
$$K^+ A \rightarrow XK_L^0 \rightarrow \pi^+ e^- V$$

•
$$K^+A \rightarrow \pi^+X$$
 (trackers)

•
$$K^+A \rightarrow \pi^+X$$
 (gas)

Effective BR (x	10^{-}	14)

Fermilab Near-term Plan

- o In the middle of P940 redesign now goals:
 - Complete the unseparated beamline design for KTeV hall.
 - Assess KABES feasibility in a 230 MHz beam
 - Re-evaluate backgrounds from Kaon interaction in detectors
 - Estimate backgrounds from non-kaon interaction accidentals
 - Evaluate PNN2 cuts, acceptance and backgrounds
 - Re-assess losses from deadtime, reconstruction, ...
- o The Plan
 - Complete the list above
 - Return to Fermilab and the PAC with a vetted re-design
 - Time scale of a few months yet.

Summary & Outlook

- The US has dropped the ball in the pursuit of flavor physics (entire K sector left out): with the premature termination of E949 and the halting of CKM. Now CERN is looking at the opportunity to clean up in this field where the US left off.
- The recent breakthrough performance of the micro-megas "KABES" technology allows consideration of an unseparated beam experiment to measure K^+ \mathbb{R} p^+ \overline{p} , either at CERN or the Main Injector
- The US has the opportunity to stay in the game with P940
- Future developments in the theory of $K^+ \rightarrow \pi^+ \nu \nu$ could motivate an extension of P940 to become a critical component of a proton driver program, if P940 gets started soon.