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The FPCL module LinearAlgebra contains two classes that emulate the mathematical concept of a
matrix: Mat ri xD (equivaently, Mat ri x) and Mat r i xC, for matrices possessing real and complex ele-
ments respectively. Wewill use either “Mat ri x”,“Mat ri xD’, or “Mat r i xC’ in sentencesreferring to
the specific classesand simply “matrix” in sentenceswhich can refer to either classor to the underlying ab-
stract mathematical object. Correspondingly, theword “scalar” will mean either FI oat 8 or Conpl ex8
depending on the context.*

Thisdocument iswritten in four sections. Thefirst deals with the fundamental tasks of declaring and
initializing matrices. Available matrix functions are described in the second. In addition to basic arith-
metic, these include methods for inversion and factorization (esp., eigenanalysis). Thethird section dis-
cusses the concept of “data models,” which was the key consideration dictating the design of this pack-
age? Finally, stream operators, which provide amechanism for light persistence, are described in the last
section.

Note: Scattered throughout thisdocument are paragraphsin italicsbeginning with theword “ Note.” This
is an example of one. They convey information about deficienciesin Version 1.0 of the FPCL LinearAl-
gebra module, either features which have not yet been implemented or ones which have but perhaps not
aswell asthey could be. It isintended that these deficiencies be corrected in later versions, at which time
the corresponding paragraphs should be removed.

1 Declaration, initialization, and assignment

Matrices are declared (instantiated) with two integer arguments indicating row and column dimensions.
Thus,“Matrix x( 12, 7 ); "wouldbeusedtoinstantiatex asamatrix with 12 rowsand 7 columns.

If the matrix is square, then an alternative constructor takes one integer argument, specifying the dimen-

sion, andaFl oat 8 argument, indicatingtheinitial valuealongthediagonal: for example,“Matrix x( 3, 1.0 );”
wouldresultina3 x 3unit matrix, whileeither“Matri x x( 3, 3 ); "or“Matrix x( 3, 0.0 );"”

would instantiatea 3 x 3 zero matrix. By default, without any arguments—asin“ Matri x a; "—a2x2

zero matrix isproduced. Finally, an optional FI oat 8[ ] argument can be used to initializeaMatrix from

an array of values. These various possibilities are listed below.

14FI oat 8” isafixed type specified in the FPCL filefixedtypes.h. It denotesa variable of eight bytes emulating a real number.
Almost always, thisisthe sameas“doubl e.” “Conpl ex8” isnot found in fixedtypes.h, but it should be.

2The ability to add data models to the package was introduced at the request of potential users, strongly expressed during an
FPCL workshop held at Fermilab.



Fl oat 8 wf 16];

Matri x a; /1 By default, a 2x1 matrix of zeroes.

Matrix b( 3, 5); I/ A 3x5 matri x of zeroes.

Matrix c( 7, 3.1416 ); /1 A 7x7 matrix with 3.1416 on the diagonal .

Matrix d( 7 ); /1 A 7x1 columm matri x.

Matrix e( 2, 8, w); /1l The sixteen components of w are | oaded
/1l into a 2x8 matri x.

Matrix f( 4, w); /1l The sixteen components of w are | oaded

/1 into a 4x4 matrix.
Similar constructions are valid for Mat r i x C objects.
Conpl ex8 w 16];

Matri xC a;

Matri xC b( 3, 5);
MatrixCc( 7, wO] );
MatrixC d( 7 );
MatrixC e( 2, 8, w);

MatrixC f( 4, w);
After aMatrix has been instantiated, numbers can be assigned directly to its elements.
Matrix a(3,2);

a(0,0) = 0.0; a(0,1) = 0.1;
a(1,0) = 1.0; a(1,1) =1.1;
a(2,0) = 2.0; a(2,1) = 2.1;

Notice that the indexing begins with zero, not one; life is too short to fight against the natural indexing
scheme of both C and C++, so learn to live with it. The same operator is used to access matrix elements
for use.

Matrix a(3,2);
Float8 x = a(1,0);

Itisalso possibletoinitialize amatrix directly from an array after itsinstantiation by using the .loadFrom
member function.

Matrix a(3,2);

Fl oat 8 nunmbers [] = { 0.0,
1.0,
2.0

1
1,
1

N o

a. |l oadFron( nunbers ); }
As noted earlier, by specifying aFl oat 8] ] argument when declaring a Mat r i xD, the array specified
is used to initialize it.2 .loadFrom works in a similar manner except that the Matrix has already been
initialized. If either method is used, you take the responsibility of assuring that the array in the argument
hasthe correct size. No error condition isthrownif it does not, but the application obviously may produce
incorrect results.

Finally, values can be loaded into a Matrix from a stream. We will postpone the discussion of this
option until Section 4.

3A similar statement holdsfor Mat r i x C except that a Conpl ex8[ ] argument is needed.



2 Functionality

To physicistsand mathematicians—indeed, to anyone except acomputer scientist —amatrix isnot merely a
container for storing data. 1t must possess algebraic and analytic functionality. In this section we describe
what is availablein FPCL/LinearAlgebra Version 1.0.

2.1 Arithmetic

Physicists are comfortably familiar with matrices — regardless of whether the comfort is justified — so the
interface for matrix arithmetic needs little introduction. The operators +, *, and - behave as one would
naively expect when sandwiched between two Mat ri xDor Mat r i xCobjects. Simple arithmetic state-
ments like

Matrix a(8,5), b(5,7), c(8,7), x(8,7);:
x: ( a*b + c );

need no further explanation. Inaddition, the operators+=, - =, and * = areavailable and work as expected.
However, remember that matrix multiplication is non-commutative, so that “x *= y; ” isequivaent to
“X = x*y;" butnotto“x = y*x;”. Finaly, mixed mode arithmetic with scalar variablesis permitted
when it makes sense.

Matrix a( 4, 4 ), b( 4, 4);
Matrix x( 3, 4), y( 3, 4);
b =10+ 3.2*%a; /1l Okay
y = 1.0 + 3.2*%x; /1 Wong. A scalar cannot be added

/1 to a non-square matriXx.

2.2 Math functions

Any math function that can be appliedto adoubl e or conpl ex variable can also be applied to asquare
matrix. The one exception isabs (or f abs), for which thereis no natural extension to matrices. Code
fragments like

Matrix x( 9, 9 );
X = si n(x) + cos(sqrt(x));

are legitimate, but the application program must include the header file MtrDMath.h before using these
functions.

Note: Math functions should be available for both the MatrixD and MatrixC classes. At the time of writ-
ing, they are only available for MatrixD. They also work only with matrices that can be diagonalized,
although this too should not be a restriction.

2.3 Inversion

Purposely, thereis no binary operator specifying division of one matrix by another. Theexpression“A/ B’
could be interpreted either as B~1- A or as A- B~1.4 Because there is no natural way to resolve the am-

4When the FPCLTF was polled, they split down the middle as to which should be the “ correct” meaning.



biguity, we are avoiding future headaches by accomplishing matrix inversions with member functions
inverse .solve, and .pseudol nverse

The .inver se method takes zero or one argument and returns the inverse of the square matrix to which
itisapplied.

matrixC y( 3, 5), m( 3, 3), x( 3, 5);

Conpl ex8 det;
y =m?* x;
X = minverse() * vy;

m=( 1.0 + m).inverse( &det );

If what is desired is the actual inverse of a matrix, asin the last line above, then thisis the method that
should be used. If the address of a scalar is supplied as the argument, then the determinant of the matrix
is passed back through it. (Determinants can also be evaluated using the .deter minant member function,
as described later.) On the other hand, if one needsto solve a system of linear equations, asin the next to
last line, it would be better to use .solve,

Matrix y( 3, 5), m 3, 3), x( 3, 5);

m* X;

y
X msolve( vy );

This possesses the advantage of solving the linear system in place, rather than first computing the inverse
and then performing amatrix multiplication. The solutionisreturned asamatrix with the samedimensions

as the argument, which is not altered.
If amatrix has more rows than columns, the .inver se routine will fail. However, the Moore-Penrose
pseudoinverse of such matrices can be cal culated using member function .pseudol nver se®

MatrixD y( 3, 5), m 12, 3 ), x( 3, 5), b( 12, 5);

y =m* x + b;
X = m pseudolnverse() * vy;
x = msolve( vy );

Apart from machine error, both lines produce the same output. The member function .solve works for
non-square matrices and resultsin the same solution as produced by pseudoinversion.

Note: Only MatrixD::inverse(), MatrixC::inverse(), MatrixD:: pseudol nverse(), and
MatrixC:: pseudol nverse() are available for use. The others involve nothing more than simple modifica-
tions of these, but they have yet to be written.

2.4 Factorizations

Matrices possess several standard factored forms. A few of them are availablein Version 1.0 of the FPCL
LinearAlgebrapackage: eigenanalysis, singular valuedecomposition, and polar factorization. Othersmay
be added to later versions, if desired. In every case, a Mat r i xD member function returns a struct that
contains the factors asits member data.

SFormally, the M oore-Penrose pseudoinverse of an mx n matrix Aisannx mmatrix éT such that éT ‘A=1landA- éT isidem-
potent (i.e., aprojector). Intuitively, it isthe “least squaresfit” matrix.



24.1 Eigenanalysis

Given a square matrix, X, the objective of eigenanalysisisto find an invertible matrix E and a diagonal
matrix A suchthat X-E = E- A, or equivalently, X = E- A- E~1. The columns of E are the eigenvectors

of X, and the diagonal elements of A areitseigenvalues. A Vat r i xDmember function .eigen produces
a“Mat ri xEi genDat a” struct containing the two matrices E and A as datamembers_vect or s and

_val ues respectively. One way of obtaining these matrices from the struct is as follows.

Matrix x( 23, 23);

Matri xEi genData w( x.eigen() );
Matri xC e( w._vectors );
MatrixC I ( w. _values );

In general, both the matrix of eigenvectors and the diagonal matrix of eigenvalues are complex.®

Note: For now, only MatrixD objects possess the .eigen member function. It should be extended to Ma-
trixC objects aswell.

2.4.2 Singular Value Decomposition

The singular value decomposition of areal matrix is a factorization into three matrices,

X=U-D-VT,
whereU andV areorthogonal, real matrices, and D isa positive-definitediagonal matrix. Dimensionally,
if Xisanr x cMat ri xD, thenU will ber x ¢ and both D and V will be c x c. Further, it is assumed that
r > c; that is, the matrix represents an overconstrained set of linear equations. Singular value decomposi-
tion is performed by the Mat r i x D member function, .singular ValueDecomposition.” Typical usageis
illustrated below.

MatrixD x( 11, 5);

Mat ri xSvDDat a W( x. Si ngul ar Val ueDeconposition() );
cout << x - (wu* wd* wv.transpose() ); /1 To machi ne accuracy,
/1 will wite a Matrix of zeroes.

2.4.3 Polar factorization

Polar factorization of areal, square matrix, X, expressesit in the form, X = P- ®, where P is a positive-
definite matrix and © is orthogonal. It can be obtained by using the Mat r i XD member function .polar,
asillustrated in the next fragment.

Matrix x( 4, 4), r( 4, 4), t( 4, 4);

Matri xPol arData W x.polar() );
r = w.rho;
t = w.theta;

6Contrary to popular opinion, not all matrices are Hermitian. In fact, not all matrices can be diagonalized. If thisis unfamiliar,
material on Jordan’s canonical form can be found in any good linear algebra textbook.

A shorter, more natural hame would have been .SV D, which is its actual acronym in the mathematics texts. However, the FP-
CLTF felt that this would be mistaken for “silicon vertex detector.”



2.5 Miscellaneous utilities

Mat ri xDand Mat ri xC possess several convenient “utility” functions. These are listed below with a
minimum of comment.

Method Return type Return value

.rows() i nt row dimension of a matrix
.columns() i nt column dimension of a matrix
.transpose() Mat ri x or Mat ri xC | transpose of a matrix
.determinant() | Fl oat 8 determinant of a square matrix
trace() Fl oat 8 or Conpl ex | trace of asquare matrix

3 Datamodels

One of the most important requirements communicated to the FPCL Task Force was the need for special
data handling of specific kinds of matrices — diagonal, tri-diagonal, anti-symmetric, and so forth. The
data handling procedures should take advantage of the matrix’s properties in order to decrease storage
and increase performance. Especially emphasized by potential userswas the desirability of treating small
square matrices in an efficient manner that bypassed the generic matrix agorithms. In response to this
request, a number of initial “data models’ are available, and we expect that more will be added in the
future.

3.1 Specifying a data model

A data model is activated via a corresponding member function of the form .declareXXX. To illustrate,
consider that a3 x 3 unit matrix can beinstantiated simply by declaringit, asinthestatement“Mat ri x a(
By default this assumes a generic data model which, accordingly, will use the generic matrix algorithms.
To specify the 3 x 3 datamodel, with all of its presumed advantages, we proceed as follows.

Matrix a( 3, 1.0 );
a. decl areMB3();

On the other hand, if aprogrammer’sintention is that the Matrix remain diagonal throughout an applica-
tion, then it may be better to specify a diagonal data model.

Matrix a( 3, 1.0 );
a. decl areDi agonal () ;

After invoking .declareDiagonal, only three numbers will be stored and manipulated in operations with
the matrix a . Thisal happens automatically, behind the scenes, in a manner completely transparent to
the application programmer. At the application level, syntax for manipulating the matrix is unchanged.
On the other hand, statementswhich violate its specia nature will produce errors.

Matrix a( 3, 3 );
a. decl areDi agonal () ;

a(0,0)
a(1,1)
a(2,2)

// These lines are K

oo
N o
NE e

1.0 );".



cout << a(0,0) << a(0,1); // a(0,1) will return zero

a(0,1) = 0.1; /1 This will produce an error mnessage

Data models cannot be combined or activated simultaneously; there is, for example, no such thing as
a“3x 3diagona” datamodel. If an urgent need for one ever arises, it could be implemented and added
to the LinearAlgebralibrary; in the absence of such demands, no such combinations exist. The result of
thelines

Matrix a( 3, 3 );
a. decl areMB3();
a.decl arebDiagonal (); // This line nullifies the previous one.

isadiagonal model only.
Appropriate use of a.declareXXX functionis predicated on the predefined dimensions of the matrix.
As examples, consider the following correct and incorrect statements.

Matrix a( 5, 5); a.decl areSymetric(); I K
Matrix b( 3, 7 ); b. decl areSymetric(); /1 Wong!
Matrix c( 4, 4); c. decl areMi4(); I K
Matrix d( 3, 3 ); d. decl areMi4() ; /1 Wong!
Matrix e( 9, 9); e. decl areD agonal () ; I K
Matrix f( 3, 9); f. decl areD agonal () ; /1 Wong!

Non-square matrices cannot be symmetric or diagonal, and the declared dimensions of a small square
matrix should match the data model invoked.

We note in passing that a matrix that is declared and assigned in the same statement will automati-
cally assume the dimensions and data model of itsinitializer. This must happen because of the way such
statements work, viz., by invoking the copy constructor.

MatrixC a( 137, 137 );
a.decl areHernitian();
Matri xC b = a;
Matri xC c(a);

Except for the names of the variables, the third and fourth lines are completely equivalent, and each will
instantiate a matrix possessing the Hermitian data model. However, in the example below,

MatrixC a( 137, 137 );
a.decl areHernitian();
Matri xC b( 137, 137 );
b = a;

thematrix b remainsgeneric; its data model will not automatically become “Hermitian.”

3.2 Behavior of .loadFromArray

The behavior of the member function .loadFromArray is affected when a non-generic datamodel is em-
ployed. Consider this next fragment.



Float8 abata [] ={ 1., 2., 3.,

4., 5.,
6. };
Matrix a(3,3); a.declareSynmetric(); a.loadFromrray( aData );
Float8 bData [] = { 2., 3.,
5.
b

Matrix b(3,3); b.declareAntisynmetric(); b.loadFromArray( bData );

Fl oat8 cData [] { 1.,

4.,

6. };
Matrix c(3,3); c.declarebiagonal (); c.loadFromArray( cData );

After adata model is declared, only the significant matrix elements should be provided by the array. The
componentsof aDat a represent the upper right el ements of the symmetric matrix a, thoseof bDat a,
the upper right elements of the anti-symmetric matrix b excluding thediagonal, and thoseof cDat a, the
non-zero elements of the diagonal matrix ¢ . Even though the extra data are neither specified nor stored,
thevaluereturned by b( 0, 1 ) would be?2, that returnedby b( 1, 0 ) wouldbe —2,c( 1, O
) would be 0, and so forth.

Thereason for writing .loadFromArray inthisway isthe efficiency of using asimple memcpy oper-
ation to transfer numbersfrom the array to the matrix data storagearea. It also easily preventserrorsfrom
being made, such as an anti-symmetric matrix with datathat are not appropriate. If the syntax seemstoo
confusing, it might be helpful to fill in the missing matrix elements with imbedded comments.

Float8 bData [] = { \* 0. *\ 2., 3.,
\* -2, 0. *\ 5.
\* -3, - 5. 0. *\
}s

Matrix b(3,3); b.declareAntisynmetric(); b.loadFromArray( bData );
Then again, it might not.

Note: The examples given above are a bit of a fraud because no Hermitian, symmetric, or anti-symmetric
data models exist yet in the Linear Algebra module. At the time of writing, the only data models that ac-
tually have been implemented are 2 x 2 (.declareM22) through 6 x 6 (.declareM66), diagonal (.declare-
Diagonal), and generic (by default, or use .makeGeneric asillustrated below).

3.3 Changing thedata model

The data model associated with amatrix can be changed any number of timesin the course of a program.
Thisisdonein oneof twoways: either by the .declareX XX member functionsasabove, or by invoking the
member functions .makeX XX instead. The difference between the two is that .makeXXX will perform
regardless of the data stored in the matrix while .declareX XX requires that they possess the appropriate
properties. Thus, for example,

Matrix x( 2, 1.0 );
x. decl areDi agonal () ;

would work properly, while



Matrix x( 2, 1.0 );

x( 0, 1) =1.0;

x. decl areDi agonal (); // Wong!
would not work at all. On the other hand,

Matrix x( 2, 1.0 );
x( 0, 1) =1.0;
x. makeDi agonal () ; /1 Ckay

would ignore the off-diagonal element and result in a diagonal matrix. However, .makeXXX cannot be
used to change the dimensions of a matrix.

Matrix x( 2, 5);
x. makeM33() ; /1 Wong!

These functions can be used in tandem. For example, if the generic matrix x is mathematically sup-
posed to be symmetric at some pointin acalculation but isnot numerically so because of machine roundoff
error, exact symmetry canbe enforced withthestatement“x . nakeSymmretri c() . makeCGeneric();".
Thefirst operation will enforce symmetry (by averaging off-diagonal elements) while the second reverts
X to its generic data model before proceeding with the program. In this way, matrices can be “ cleaned
up,” asomewhat dangerous operation that probably should be done rarely.

If an assignment statement is written between matrices possessing different data models, the data are
transferred, if it makes sense to do so, but each matrix retainsits own data model.

Matrix a( 11, 11 ), b( 11, 11 );
Matrix c( 8, 7 );
b .declareAnti symetric();

a

= b; /1 OK but a remains a generic matrix.
c = b; /1 Wong! Dinmensions are incorrect.
b = a - a.transpose();

/1 WIl work only if the right hand side
/1 is antisymretric, to within sonme tol erance.

The classes could have been designed so that the statement “c = b; ” would be acceptable, but that pos-
sibility was voted down by the FPCL Task Force. Instead, this restriction can be bypassed, if necessary,
by assigning with the .setEqual To member function.

Matrix a( 3, 8 ), b( 11, 11 );
b .declareAnti symetric();

a. set Equal To( 8.0*b );

The function setEqual To causes a to changeits datamodel to that of b or, more precisely, to that of its
argument. Thisisuseful when writing afunction with matrix arguments, especially if one wantsto absorb
the data model of an argument and, possibly, even return the answer with the same model.

Matrix foo( const Matrix& x )

{
Matri x ret;

ret.set Equal To(x);

return ret;

}



34 RTTI

Run timetype information (RTTI) provides ameansfor learning the type an object given only its address
(i.e., avoi d* pointer). The RTTI global function typeid cannot be used directly to discover the data
model associated with aMat ri x; for example, a statement like

Matri x Xx;

cout << typeid(x).nanme();

would produce either “MatrixD” (or “MatrixC”) as its value, regardless of the underlying data model.
It should never really be necessary to know this information, but for completeness, the public member
function .typel D provides a capability for acquiring the data model associated with a Matrix. It returns
the same Type_info object astypeid but now referring to the data model. For example,

Matri x Xx;

ébﬂt << x.typel D). nane();

would result in “M_DGener i ¢” being written to the output stream.

3.5 New datamodéds

The LinearAlgebra module was designed to possess a natural upgrade path for adding more data models
inlater versions, not only the anticipated ones, like Symmetric and Hermitian, but al so unanticipated ones,
such asMarkov or Hadamard. An effort hasbeen madeto i solate the necessary changes so that the process
of adding new data modelswould scale no worse than linearly with the number of already existing models.
Itisasolikely that the modul€’ soriginal author will not be the oneto write all the additional datamodels.
In order to make it easier for anyone to add them as needed, instructions can be found in the companion
Design Notes.

Note: Of course, the Design Notes document does not yet exist.

4  Streaming: alight persistence mechanism

TheLinearAlgebramoduleincludesstream operators, providing a“light” persistencemechanism. A small
demo program,

#i ncl ude <stdlib. h>
#i ncl ude "Linear Algebra\ Matrix. h"

voi d main()

{
Matrix x( 3, 4);
for( int i =0; i <3; i++) {
for( int j =0; j <4; j++) {
x( i, j ) = (j+1)*exp(10*i);
}
}
cout << x;
}

10



would produce the output,

begin M_.DGeneric 3 X 4
1. 000e+00 2. 000e+00
2.203e+04 4.405e+04
4.852e+08 9.703e+08

end

formatted
.000e+00 4.000e+00
.608e+04 8.811e+04
. 455e+09 1.941e+09

= o w !

If the output iswritten to afile, the data can be read back using the stream-in operator. For example, the
program,

#i ncl ude <stdlib. h>
#i ncl ude <fstreamh>
#i ncl ude "Li near Algebra\ Matri x. h"

voi d main()

{
Matrix x( 3, 4);
for( int i =0; i <3; i++) {
for( int j =0; j <4; j++) {
x( i, § ) = (j+1)*exp(10%i);
}
}
of streamos( "test.dat" );
0s << X;
os. cl ose();
ifstreamis( "test.dat" );
Matrix vy;
cout << y;
is >> vy,
cout << y;
}
would result in the console output,
begin M_.DGeneric 2 X 2 - formatted
0. 000e+00 0. 000e+00
0. 000e+00 0. 000e+00
end
begin M_.DGeneric 3 X 4 - formatted

1. 000e+00 2.000e+00

2.203e+04 4. 405e+04

4,852e+08 9. 703e+08
end

. 000e+00 4.000e+00
.608e+04 8.811e+04
. 455e+09 1. 941e+09

= o w !

Streaming provides the one and only manner in which an already declared Matrix can change its dimen-
sionality. Thisis even more apparent in the following example,

#i ncl ude <stdlib. h>
#i ncl ude <fstreamh>
#i ncl ude "Linear Algebra\ Matri x. h"

1



voi d main()

{
Matrix x( 3, 4), y( 2, 2); y. decl areM2();
Matri x* z[2]; z[0] = &X; z[ 1] = &y;
int i, j, k;
for( k =0; k <2; k++ ) {
for( i =0; i < z[k]->rows(); i++) {
for( j =0; j < z[k]->colums(); j++ ) {
("z[k])(C i, J ) = (]+1)*exp(10*i);
}
}
}

of streamos( "test.dat" );
0S << X <<y,
os. cl ose();

ifstreamis( "test.dat" );
Matri x w,
for( i =0; i <2; i++) {
is > w
cout << w;
}
}

with console output,

begin M_.DGeneric 3 X 4 - formatted
1. 000e+00 2.000e+00 3.000e+00 4.000e+00
2.203e+04 4.405e+04 6.608e+04 8.811e+04
4.852e+08 9.703e+08 1.455e+09 1.941e+09
end
begin M.D22 2 X 2 - formatted
1. 000e+00 2.000e+00
2.203e+04 4.405e+04
end

Both data model and dimensionality are preserved by the stream operators. While alittle dangerous, this
flexibility allows a user to read a Matrix from a file without requiring that he® know these details ahead
of time.

Note: It may be decided by higher FPCLTF authority that this capability is indeed too dangerous and
should be eliminated. Personally, | hope that it is allowed to stand.

The examples written so far do not illustrate true persistence, since numbers are written to the ASCI|
file with only four significant digits. Streaming formats can be changed in a number of ways. True per-
sistenceis provided by specifying a binary format as follows.

8Yes, yes: or she.

12



#i ncl ude <stdlib. h>
#i ncl ude <fstreamh>
#i ncl ude "Linear Algebra\ Matrix. h"

voi d main()

{

Matrix x( 2, 3), v;

int i, j;

for( i =0; i <2; i++) {
for(j =0 ] <3; j++) {

x( 1, j ) = (j+1)*exp(10*i);

}

}

cout << "x:\n" << x;

{ ofstreamos( "test.dat" );

0s << X;

os. cl ose();

ifstreamis( "test.dat" );

is >> vy,

cout << "Difference: ASCII:\n" << x - vy;

}

Qut put For mat nyf or mat ;
nyf or mat. dunpbase = BIN,
X. set Qut put For mat ( &nyformat );

{ ofstreamos( "test.dat", ios::binary | ios::out );
0s << X;
os. cl ose();
ifstreamis( "test.dat" );
is >> vy,
cout << "Difference: Binary:\n' << x - vy;
}

}

After declaring an Qut put For mat object, myf or mat , and setting its .dumpbase field to BI N, it is
assigned to the Matrix x using the member function .setOutputFormat. The argument is nyf or mat 's
address; in fact, nyf or mat is not copied, which allows matrices to share the same Cut put For nat .
Notice that the output file stream ifself must be opened withtheflags“i os: : bi nary | i os::out.”
Omitting this may or may not produce erroneous results, depending on the operating system and the size
of the matrix. This demo would produce the consol e outpuit:

X:

begin M_.DGeneric 2 X 3 - formatted
1.000e+00 2.000e+00 3.000e+00
2.203e+04 4.405e+04 6.608e+04

end

Di fference: ASCII:

begin M_.DGeneric 2 X 3 - formatted

13



0. 000e+00 0.000e+00 0.000e+00
-3.534e+00 2.932e+00 -6.026e-01
end
Di fference: Binary:
begin M_.DGeneric 2 X 3 - formatted

0. 000e+00 0.000e+00 0.000e+00

0. 000e+00 0.000e+00 0.000e+00
end

As expected, the binary stream provides an exact replica of the original, but the ASCII one does not. The
supported possibilities for the .dumpbase field are: Bl N for a binary dump of bits and DEC, OCT, and
HEX, for ASCII fileswith datawritten in decimal, octal, and hexadecimal format respectively. Inthelatter
three cases, Qut put For mat objects also possess .width and .precision fields which allow the user to
specify those as well.

TheMatrix classespossessadefault Qut put For mat which governsthe output of all matriceswhose
.setOutputFor mat member functions have not been invoked. These defaults are global variables named
M_D: : def aul t Qut put For mat ,forclassivat ri xD,andM_C: : def aul t Qut put For mat ,for class
Mat r i xC. By changing their fields at any point in a program, the user can modify them to suit his needs,
thereby affecting the (default) stream formatting for all matrices simultaneously. Even after the stream
format of a matrix has been changed, it can be easily returned to the default value.

Matri xC z;

z.set Qutput Format (  &WLC: : def aul t Qut put Format ) ;
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