Calculating matrix inverse correctness tests results

Sample 5x5 matrix:
           1000             4              6                8               10
            4            1100             16              18              20
            6               16          1200              28              30
            8               18              28          1300              40
           10              20              30              40          1400
 

1. Matrix Inverse, 1 time

LinearAlgebra

Inverse =
          0.001       -3.35e-06       -4.65e-06         -5.8e-06       -6.83e-06
 -3.35e-06            0.00091       -1.15e-05       -1.19e-05       -1.24e-05
 -4.65e-06       -1.15e-05          0.000834       -1.73e-05       -1.72e-05
   -5.8e-06       -1.19e-05       -1.73e-05            0.00077       -2.14e-05
 -6.83e-06       -1.24e-05       -1.72e-05       -2.14e-05          0.000715

LinearAlgebra (Symmetric Matrices)

Inverse =
          0.001       -3.35e-06       -4.65e-06        -5.8e-06        -6.83e-06
 -3.35e-06            0.00091       -1.15e-05       -1.19e-05       -1.24e-05
 -4.65e-06       -1.15e-05          0.000834       -1.73e-05       -1.72e-05
   -5.8e-06       -1.19e-05       -1.73e-05            0.00077       -2.14e-05
 -6.83e-06       -1.24e-05       -1.72e-05       -2.14e-05          0.000715

CLHEP (using inverse() )

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05  -2.14314e-05     0.000715492

CLHEP (using inverse(), Symmetric matrices)

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05   -2.14314e-05    0.000715492

CLHEP (using invert() )

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05  -2.14314e-05     0.000715492

CLHEP (using inverse(), Symmetric matrices)

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05  -2.14314e-05     0.000715492

CovMatrices (inherently symmetric)

Inverse =
  +1.0001559939e-03
  -3.3502195209e-06   +9.0969134630e-04
  -4.6500515410e-06   -1.1524144799e-05   +8.3434251770e-04
  -5.7980848107e-06   -1.1945869433e-05   -1.7253412881e-05   +7.7046289497e-04
  -6.8308075788e-06   -1.2383404007e-05   -1.7187968289e-05   -2.1431439411e-05   +7.1549205199e-04
 

2. Matrix Inverse, 49 times (the matrix's inverse  is stored on the matrix itself)

LinearAlgebra

Inverse =
          0.001       -3.35e-06       -4.65e-06         -5.8e-06       -6.83e-06
 -3.35e-06            0.00091       -1.15e-05       -1.19e-05       -1.24e-05
 -4.65e-06       -1.15e-05          0.000834       -1.73e-05       -1.72e-05
   -5.8e-06       -1.19e-05       -1.73e-05            0.00077       -2.14e-05
 -6.83e-06       -1.24e-05       -1.72e-05       -2.14e-05          0.000715

LinearAlgebra (Symmetric Matrices)

Inverse =
          0.001       -3.35e-06       -4.65e-06        -5.8e-06        -6.83e-06
 -3.35e-06            0.00091       -1.15e-05       -1.19e-05       -1.24e-05
 -4.65e-06       -1.15e-05          0.000834       -1.73e-05       -1.72e-05
   -5.8e-06       -1.19e-05       -1.73e-05            0.00077       -2.14e-05
 -6.83e-06       -1.24e-05       -1.72e-05       -2.14e-05          0.000715

CLHEP (using inverse() )

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05  -2.14314e-05     0.000715492

CLHEP (using inverse(), Symmetric matrices)

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05   -2.14314e-05    0.000715492

CLHEP (using invert() )

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05  -2.14314e-05     0.000715492

CLHEP (using inverse(), Symmetric matrices)

Inverse =
      0.00100016  -3.35022e-06  -4.65005e-06  -5.79808e-06  -6.83081e-06
 -3.35022e-06     0.000909691  -1.15241e-05  -1.19459e-05  -1.23834e-05
 -4.65005e-06  -1.15241e-05     0.000834343  -1.72534e-05    -1.7188e-05
 -5.79808e-06  -1.19459e-05  -1.72534e-05     0.000770463  -2.14314e-05
 -6.83081e-06  -1.23834e-05    -1.7188e-05  -2.14314e-05     0.000715492

CovMatrices (inherently symmetric)

Inverse =
  +1.0001559939e-03
  -3.3502195209e-06   +9.0969134630e-04
  -4.6500515410e-06   -1.1524144799e-05   +8.3434251770e-04
  -5.7980848107e-06   -1.1945869433e-05   -1.7253412881e-05   +7.7046289497e-04
  -6.8308075788e-06   -1.2383404007e-05   -1.7187968289e-05   -2.1431439411e-05   +7.1549205199e-04
 

3. Matrix Inverse, 50 times (the matrix's inverse  is stored on the matrix itself)

LinearAlgebra

Inverse =
     1e+03                   4                    6                     8                  10
             4         1.1e+03                 16                   18                  20
             6                  16         1.2e+03                  28                  30
             8                  18                  28         1.3e+03                  40
           10                  20                  o30                40         1.4e+03

LinearAlgebra (Symmetric Matrices)

Inverse =
     1e+03                   4                    6                     8                  10
             4         1.1e+03                 16                   18                  20
             6                  16         1.2e+03                  28                  30
             8                  18                  28         1.3e+03                  40
           10                  20                  o30                40         1.4e+03

CLHEP (using inverse() )

Inverse =
         1000                4                6                8            10
               4          1100              16              18            20
               6              16          1200              28            30
               8              18              28          1300            40

CLHEP (using inverse(), Symmetric matrices)

Inverse =
         1000                4                6                8            10
               4          1100              16              18            20
               6              16          1200              28            30
               8              18              28          1300            40

CLHEP (using invert() )

Inverse =
         1000                4                6                8            10
               4          1100              16              18            20
               6              16          1200              28            30
               8              18              28          1300            40

CLHEP (using inverse(), Symmetric matrices)

Inverse =
         1000                4                6                8            10
               4          1100              16              18            20
               6              16          1200              28            30
               8              18              28          1300            40

CovMatrices (inherently symmetric)

Inverse =
  +1.0000000000e+03
  +4.0000000000e+00   +1.1000000000e+03
  +6.0000000000e+00   +1.6000000000e+01   +1.2000000000e+03
  +8.0000000000e+00   +1.8000000000e+01   +2.8000000000e+01   +1.3000000000e+03
  +1.0000000000e+01   +2.0000000000e+01   +3.0000000000e+01   +4.0000000000e+01   +1.4000000000e+03 }
 

Tests were compiled and build using GCC 3.0.1

Nick Macks