T -
Fermilab GUO014C
'3

Complete Guide and Reference Manual for
UPS, UPD and UPP v4

Part | V. Product Developer’s Guide and
Part VIII: Developer’s Reference

Release 2.0
June 30, 2000

Computing Division
Fermi National Accelerator Laboratory

Compiled by Anne Heavey

ABSTRACT

This manual documents the standard methodology for UNIX product support at Fermilab, which
isimplemented viathe utilities UPS (UNIX Product Support), UPD (UNIX Product Distribution),
and UPP (UNIX Product Poll). These utilities were significantly redesigned for version v4, which
wasinitially released in 1998, and have continued to be revised since then. The latest rel ease as of
thiswritingisv4_5 2. This document supersedes GU0014 “UPS and UPD v4 Reference Man-
ual”, released June 5, 1998.

This part of the document (GU0014C) includes a guide and reference manual for product devel op-
ers.

Revision Record

May 1997 Original Release 1.0 (for UPS v3 and UPD v2)

August 1997 Revisions 1.1 and 1.1a (for UPSv3 and UPD v2)

June 1998 Release 1.0 for UPS and UPD v4

December 1999 Draft release 2.0 for UPS/UPD/UPP v4. Part VI Command Reference only
June 2000 Release 2.0 for UPS, UPD and UPP v4 (current as of v4 5 2)

This document and associated documents and programs, and the material and data contained therein, were devel oped
under the sponsorship of an agency of the United States government, under D.O.E. Contract Number EY-76-C-02-
3000 or revision thereof. Neither the United States Government nor the Universities Research Association, Inc. nor
Fermilab, nor any of their employees, nor their respective contractors, subcontractors, or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for accuracy, completeness or usefulness
of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-
owned rights. Mention of any specific commercia product, process, or service by trade name, trademark,
manufacturer, supplier, or otherwise, shall not, nor isit intended to, imply fitness for any particular use, or constitute
or imply endorsement, recommendation, approval or disapproval by the United States Government or URA or
Fermilab. A royalty-free, non-exclusive right to use and disseminate same for any purpose whatsoever is expressly
reserved to the U.S. and the U.R.A. Any further distribution of this software or documentation, parts thereof, or other
software or documentation based substantially on this software or parts thereof will acknowledge its source as
Fermilab, and include verbatim the entire contents of this Disclaimer, including this sentence.

Acknowledgments

The redesign and redevel opment of UPS and its companion products in preparation for Fermilab’s
Run Il involved a substantial commitment of resources from the Computing Division in 1997-98.
Special thanksto Don Petravick (HPPC), Ruth Pordes (OLS), and Dane Skow (OSS) for providing
talented and motivated members of their groups to accomplish thistask. Sincetheinitial release of
UPS/UPD v4 in 1998, development has been continuing, and we are at version v4 5 2 asof this
writing.

The redevelopment effort was led by Eileen Berman. With her, the principal designers and
developers of UPS/UPD v4 included David Fagan, Marc Mengel, L ars Rasmussen and Margaret
Votava. Other contributors to the new design included Lauri Loebel Carpenter, Rob Harris, Alan
Jonckheere, Art Kreymer, Liz Sexton-Kennedy. Other contributors to the coding effort included
Chuck Debaun, Paul Russo and Don Walsh.

Contributorsin the areas of code review, testing, documentation review and deployment included
Lauri Loebel Carpenter, Chuck Debaun, Lisa Giacchetti, Alan Jonckheere, Art Kreymer, Liz
Sexton-Kennedy, Mike Stolz, Don Walsh and Gordon Watts, in addition to the devel opment team.
Special thanks go to Marc Mengel and Margaret Votava for contributing all the updated UPD and
UPP information included in the first release of this manual for UPS/UPD v4.

Wayne Baisley and Marc Mengel are currently responsible for on-going support and development
of UPS/UPD, and thanks go to them for providing quite a bit of updated information for this
release of the manual. Thanks are also due to Wayne and Marc as well as to Joy Hathaway, Lauri
L oebel Carpenter and Cindy Wike for reviewing portions of the documentation and providing
feedback.

Table of Contentsfor Parts|V and VII|I

About thisManual INT-1
Document Structure, Purpose and Intended Audiences. INT-1
Avalability ... INT-3
UPates.ot e INT-3
CONVENLIONS .. ettt INT-3
Your CommentsareWelcome! i INT-5

Part IV: Product Developer’s Guide

Chapter 15: UPSProduct Development: General Considerations 15-1
15.1 Product Development Considerations and Recommendations 15-1
15.1.1 All Products (Locally Developed and Third Party) 15-1
15.1.2 Productsthat YouDevelop i, 15-2
15.1.3 Third-Party Products Requiring aHard-Coded Path 15-3
15.2 Toolsfor Developing and/or Packaging Products 15-5
1521 Buildmanager 15-5
15,22 GV S 15-5
1523 Template productt 15-6
15.3 Directory Structure for aUPS Product Instance 15-6
Chapter 16: BuildingUPSProducts i, 16-1
16.1 Basic Stepsfor MakingaUPSProduct 16-1
16.1.1 Build the Directory Hierarchy 16-2
16.1.2 Createthe TableFile i, 16-2
16.1.3 Declare the Product to your Development UPS Database 16-2
16.1.4 Copy the Product Executable to the bin Directory 16-3
16.1.5 ProvideProductmanPagescciviin... 16-3
16.1.6 TesttheProduct, 16-4
16.2 Specificsfor Different Categoriesof Products 16-4
16.2.1 Unflavored SCripts 16-4
16.2.2 Pre-built Binaries 16-5
16.2.3 Products Requiring Build (In-House and Third-Party) 16-6
16.24 Overlad ProductSo 16-7

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-1

16.3 Sample Auxiliary Files. i 16-8

16.3.1 README 16-8
16.3.2 INSTALL NOTE......... i e 16-9
16.3.3 RELEASE NOTES e 16-9
Chapter 17: Making Products Available For Distribution 17-1
17.1 Product Distribution Overview i, 17-1
17.2 CreatingProduct Tar Files 17-2
17.3 AddingaProduct e 17-3
17.3.1 Product Categories Defined for KITS 17-3
1732 EXamples 17-4
17.4 Adding an Independent TableFile........................... 17-5
17.5 Replacing a Component (Table File or ups Directory) 17-6
17.6 Adding/ChangingaChain 17-7
17.7 Deleting aProduct or Componentccovuan... 17-8
17.8 CloningaProduct 17-8
17.9 Including Sourcein one of Fermilab’s CVS Repositories 17-9
17.10 Product Announcement Policies 17-10
Chapter 18: Usingtemplate product to Build and Distribute UPS Products
... 18-1
18.1 OVEIVIBW ittt e e e 18-1
18.2 Accessingtemplate product o 18-2
18.3 Cloning template product, 18-2
184 TheTop-Level Makefile 18-3
18.5 Inserting your Product intothe Template 18-4
18.6 BuildingtheProduct i, 18-4
18.6.1 AddBuildInstructions, 18-4
18.6.2 Runthelnitiad Build i 18-4
18.6.3 Add Build Instructionsto Top-Level Makefile 18-4
18.6.4 RebuildInstructionsco i 18-5
18.7 Testingyour Productt 18-5
18.8 Customizingyour Tar File 18-5
18.9 Adding your Product to a DistributionNode 18-6
18.9.1 AddProducttofnkits i 18-7
18.9.2 Specify MultipleFlavors i 18-7
18.10 Adding your Product SourcetoaCVSRepository 18-8
18.11 Removing your Product from a DistributionNode 18-8
Chapter 19: Checklist for Building and Distributing Products 19-1
19.1 Pre-build Checklist 19-1
19.2 BuildtheProduct 19-2
19.3 TesttheProduct i 19-2
19.4 Didributetofnkitsas“test” i 19-3
19.5 Announcethe Product 19-3
19.6 Distributeto fnkitsas“current” 19-4

TOC-2 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Part VIII: Developer’'s Reference

Chapter 33: Actionsand ACTION Keyword Values. 331
33.1 Overview of ACHIONSottt e 331
33.2 UPSCommand ACtiONSot 33-1

33.2.1 UPSCommandsasKeywordValues..................... 33-1
33.2.2 “Uncommands’ asKeywordValues 33-2
33.3 Chain ACtioNSot 33-3
33.3.1 ChainsasKeywordVaues 33-3
33.3.2 “Unchains” asKeywordValues 33-3
33.4 The“Unknown Command” Handler 33-3
33.5 ActionsCalled by Other Actions 33-4

Chapter 34: Functionsused inActionsccouu.... 34-1
34.1 Overview Of FUNCLIONSot e 34-1
34.2 ReversibleFunctions i 34-1
34.3 Function DesCriptionsccuiiiii i 34-2

3431 addAlias ... e 34-2
3432 doDefaults ... 34-3
3433 enNVAPPENd e 34-3
3434 envPrepend 34-4
3435 envRemove 34-4
34.3.6 ENVSEL ... 34-5
3437 envSetlfNotSet 34-5
3438 envUNSet 34-5
34.3.9 EXEACCESS . . .ottt 34-6
34.3.10 exeActionOptionalc. i 34-6
34.3.11 exeActionRequired 34-6
34312 BXECULEot 34-7
34313 fileTest ..o 34-7
34.3.14 pathAppend 34-8
34315 pathPrepend 34-8
34.3.16 pathReEMOVE 34-9
34317 pathSet 34-9
34.3.18 ProdDir ... e 34-9
34.3.19 SEUPENVo 34-10
34.3.20 setupOptional e 34-10
34321 setupRequired 34-10
34.3.22 sourceCompileOpto 34-11
34.3.23 sourceCompileReq 34-11
34.3.24 sourceOptCheck 34-12
34.3.25 sourceOptionalo 34-13
34.3.26 sourceReqCheck 34-13
34.3.27 sourceRequired 34-14
34328 UNALIES . ..o 34-14
34.3.29 UNProdDIr . ..ot 34-14

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-3

34.3.30 UNSEIUPENV . . oo e e 34-15

34.3.31 unsetupOptionalc i 34-15
34.3.32 unsetupRequired 34-16
34.3.33 writeCompileScript ...t 34-16
34.4 Functions under Consideration for Future Implementation 34-17
34.5 Examples of Functionswithin Actions 34-18
3451 ASlUp ACLiON ... 34-18
3452 A“declareascurrent” Action, 34-18
34.6 Loca Read-Only Variables Availableto Functions 34-18
34.6.1 List of Current Read-Only Variables 34-19
34.6.2 Read-Only Variables under Consideration for the Future 34-21
Chapter 35: TableFiles. i e 35-1
35.1 About TableFiles. ... 351
35.2 When Do You Need to ProvideaTableFile? 351
35.3 Recommendations for Creating TableFiles.................... 35-2
354 TableFileStructureand Contents, 35-2
35.4.1 BaSICSITUCIUIE . .. oottt e e 35-2
35.4.2 Grouping Information 35-3
3543 TheOrderof Elementsco i, 35-3
35.5 Product Dependencies ... 35-4
35.5.1 Defining Dependencies, 35-4
35.5.2 Product Dependency Conflicts 35-4
35.6 TableFileExamples. i 35-6
35.6.1 Example lllustrating Use of FLAVOR=ANY 35-6
35.6.2 Example Showing Grouping, 35-6
35.6.3 Example with User-Defined Keywords 35-7
35.6.4 ExamplesIllustrating ExeActionOpt Function 35-8
Chapter 36: ScriptsYou May Need to Providewith aProduct 36-1
36.1 configureandunconfigure i 36-1
36.2 talor ... 36-3
36.3 current and UNCUITENt oottt ettt 36-3
36.4 Startand Stopo e 36-3
Chapter 37: Useof Compile Scriptsin TableFiles 37-1
7.1 OVEIVIBW oottt ettt e e 37-1
37.2 UsagelInformation0 it 37-1
Chapter 38: Creating and FormattingManPages 38-1
38.1 Creating the Source Document (Unformatted) 38-2
38.1.1 SourceFileFormatcciiiiiii 38-2
38.1.2 Man Page Information Categories 38-3
38.1.3 ExampleSourceFile i 38-4
38.2 FormattingtheSourceFile.............. 38-5
38.2. 1 Nroff .. 38-5
38.2.2 groff ... 38-6
38.3 Converting your Man Pageto html Format 38-6

TOC-4 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

TOC-5

TOC-6 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Table of Contentsfor Complete Guide

About thisManual INT-1
(Thisintroductory chapter islisted in the front section of the table of contents.)

Part I: Overview and End User’s Guide

Chapter 1. Overview of UPS,UPD andUPPV4 1-1
1.1 Introductionto UPS,UPD andUPP 1-1
1.2 Motivation for the UPSMethodology 1-2
L3 UPSProductsovii e e e 1-3

131 VEISONS .« ottt e 1-3
132 Flavors ... 1-3
133 Qualifiers ..o e 1-4
1.34 Product INStances ..o e 1-4
135 Chains . .ot 1-4
1.3.6 Product Dependencies ... 1-5
1.3.7 Product Overlays ... 1-6
1.4 UPSDatahase OVEIVIEWot 1-6
14.1 UPSDatabaseFilescoo i 1-6
142 UPSDatabase Structure 1-7
15 UsingUPSWithoutaDatabasecooiin.. 1-7
1.6 UPSandUPD Commandsouuiiininiieiiinnannns 1-8
161 SYNMIAX . ..ottt e 1-8
16.2 Defaults ... 1-8
1.7 TheUPSENVIIONMENtottt 1-9
1.7.1 Initidlizing the UPS Environment 1-9
1.7.2 Changes UPS Makesto your Environment 1-10

Chapter 2. UPSOperationsfor theEndUser 2-1
2.1 Determining your MachinesFlavor 2-1
2.2 Ligting Product InformationinaDatabase 2-2

221 Formatted Output Style i 2-3
2.2.2 Condensed Output Styleo 2-3
223 EXamMpPles 2-4
2.3 FindingaProduct’'sDependencies., 2-7

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-7

24 SettingupaProduct 2-8

2.4.1 The setup Command fortheTypical Case 2-9
2.4.2 When Y ou Need to Specify Other Options 2-9
25 Running UnsetuponaProduct 2-10

Part I1: Product Installer’s Guide

Chapter 3: General Product Installation Information 31
3.1 Installation Methodsfor UPSProducts 31
3L UPD .. e 31
3L 2 UPP 3-2
B8 FTP o 3-2
3.2 User Node Registrationfor KITS ...t 3-2
3.3 What Y ou Need to Know about Y our System’s UPD Configuration .. 3-3
3.3.1 Location of UPD ConfigurationFile 3-3
3.3.2 WhereProductsGet Declared 34
3.3.3 WhereProductsGet Installed 3-4
3.4 DeclaringanInstanceManually 3-5
34.1 TheupsdeclareCommand 35
342 EXampPles ... e 3-6
35 Installation FAQo 3-7
3.5.1 What File PermissionsGet Set?, 3-7
3.5.2 You're Ready to Install: Should you Declare Qualifiers? 3-8
3.5.3 What if an Install Gets Interrupted? 3-8
3.5.4 What if a Product was Installed under aDifferent Name? 3-8
3.6 Post-Installation Procedures 39
3.6.1 ConfiguringaProduct, 3-9
3.6.2 TaloringaProduct i 39
3.7 Networking Restrictionsatyour Sitecovvan... 39
3.7.1 ProxyingWebservert 39
3.7.2 Firewall for Incoming TCP Connections 3-10
Chapter 4. Finding Infor mation about Products on a Distribution Node . 4-1
4.1 Listing Productson aDistributionNode 4-1
411 USINgUPD ... 4-1
412 USNgUPP ... 4-3
4.2 Listing Product Dependencies on a DistributionNode 4-5
4.3 Information about ProductsinKITS 4-6
4.3.1 Access Redtrictions and Product Categories 4-6
4.3.2 Product Pathnamesfor FTPACCESSo 4-7
4.4 Specia Instructions for Proprietary Products 4-8

TOC-8 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

Chapter 5. Ingtalling ProductsUsingUPD 51

51 Theupdinstall Command 5-1
511 Command Syntaxcuuiriiii i 5-1
5.1.2 Passing Optionsto the Local ups declare Command 5-2

5.2 How UPD SelectstheDatabase, 5-2
5.2.1 Database Selection Algorithm 5-2
5.2.2 Database Selection for Dependencies 5-3
5.2.3 Selecting a Database for Development or Testing 5-3

5.3 Checklist for Installing a Product usngUPD 5-3

54 EXamPIES ..o e e 5-4
5.4.1 Instal aProduct Using Default Database 5-4
5.4.2 Install aProduct, Specifying Database 5-5
5.4.3 Install aProduct and All Dependencies 5-5
5.4.4 Instal aProduct and No Dependencies 5-7
5.4.5 Install a Product and Required DependenciesOnly 5-7

Chapter 6: Installing ProductsUsingUPP 6-1

6.1 Overview of Using UPPto Install Products. 6-1

6.2 CreatingaUPP SubscriptionFile 6-1
6.2.1 CreatetheHeader i, 6-2
6.2.2 ldentifytheProduct i 6-2
6.2.3 Trigger the Product Installation 6-2
6.2.4 ProvidelInstructionsStoUPP 6-3

6.3 Sample Subscription Filefor InstallingaProduct 6-3

6.4 TheUPPCommandty 6-4

6.5 AutomatingUPPviacron 6-4

Chapter 7. Ingtalling ProductsusingFTP 7-1

7.1 UPS Product Componentsto Download 7-1

7.2 Installing Products from fnkits.fnal.gov 7-2
7.2.1 Download the Filesfromfnkits 7-2
7.2.2 Unwind the Filesinto your ProductsArea 7-3
7.2.3 Declarethe Product toyour Database 7-4

7.3 Installing Products from Other Product Distribution Nodes 7-4
7.3.1 Locatethe Product FilesontheServer 7-4
7.3.2 Download the FilesfromtheServer 7-5
7.3.3 Unwind the Filesinto your ProductsArea 7-5
7.3.4 Declarethe Producttoyour Database 7-5

Chapter 8: Product Installation: SpecialCases 8-1

8.1 Installing Products that Require Special Privileges 8-1

8.2 Installing Locally Using UPD fromAFS-Space 8-2

8.3 Installing Productsinto AFSSpace, 8-3
B.3.1 OVEIVIBW .ot 8-3
8.3.2 RequestaProductVolume, 8-4
833 Ingtal your Product 8-4
8.3.4 Post-Installation Steps 8-5

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-9

Chapter 9: Troubleshooting UPS Product Installations 9-1

Part I11: System Administrator’s Guide

Chapter 10: MaintainingaUPSDatabase 10-1
10.1 DeclareaniInstanceot 10-1
10.1.1 TheupsdeclareCommandcoiiuiin... 10-2
10.1.2 EXamples ..o 10-2
10.2 DeclareaChaint 10-4
10.2.1 The ups declare Command with Chain Specification 10-4
1022 EXaMpPles . ..o 10-5
103 RemoveaChaino 10-6
104 ChangeaChain i 10-7
10.5 Undeclareand Removeaninstanceo 10-7
10.5.1 Using upsundeclareto RemoveaProduct 10-8
10.5.2 Undoing Configuration Stepst 10-9
10.5.3 Using UPPto RemoveaProduct 10-10
10.6 Verify Integrityof anlnstance 10-10
10.7 Modify Information in aDatabaseFile 10-11
10.8 Determine If aProduct NeedstobeUpdated 10-13
1081 USINQUPP ..o 10-13
10.82 USINQUPD o e 10-13
10.9 UpdateaTableFileor upsDirectory 10-14
10.10 RetrieveanIndividual File..............t 10-15
10.11 Check Product Accessibility 10-16
10.12 Troubleshootingo e e 10-17
Chapter 11: UPSand UPD Pre-install I ssuesand General Administration
... 11-1
11.1 Choosing Installer Accounts ..., 11-1
11.1.1 Singlelnstaller Account 11-1
11.1.2 MultipleInstaller Accountsccovvnin... 11-1
11.1.3 Separate Installer Accounts for Different Product Categories .. 11-2
11.2 Setting gidsfor Multiple Installer Accounts 11-2
11.3 File Ownership, Permissions and Access Restrictions 11-3
1131 Product Files.o 11-3
11.3.2 DatabaseFiles ... 11-3
11.4 Product File Location and Organization 11-4
11.4.1 ConsSiderationsvuiiit i 11-4
11.4.2 SingleFlavor or SingleNodeSystems. 11-4
11.4.3 Multi-Flavor and/or Multi-Node Systems 11-5
11.5 Database File Location and Organization 11-6
11.5.1 Choosing Single or Multiple UPSDatabases 11-6
11.5.2 UPSDatabase FilePointers ..., 11-6

TOC-10 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

11.6 Installing UPS for Use Without aDatabase 11-7

11.7 CYGWIN (WindowsNT) ISSUESo 11-7
11.7.1 Using Correct Perl Versionot 11-7
11.7.2 Mounting the CYGWIN binDirectory 11-8
11.7.3 Setting Environment Variables 11-8

11.8 General AdministrationISsUes, 11-8
11.8.1 UpgradinganOlder System ccovn... 11-8
11.8.2 Adding aNew Database and/or ProductsArea 11-9
11.8.3 Collecting Statisticson ProductUsage 11-10

Chapter 12: Providing Accessto AFSProducts. 12-1

121 OVEIVIBW .t e e e 12-1

12.2 Configuring aLocal Database to Work WithAFS 12-2
12.2.1 Stepsto Create and ConfiguretheDatabase 12-2
12.2.2 Post-Configuration: Reinitialize FUE Environment 12-4
12.2.3 A Note about Product Installation for this Configuration 12-4

12.3 Installingaloca Copy of CoreFUE 12-4

12.4 Additional Stepsfor Unfamiliar Naming Conventions 12-5

12.5 Updating /usr/local/bin to AccessAFSProducts 12-6

Chapter 13: BootstrappingCoreFUEo, 13-1

13.1 Downloading the Bootstrap and Configuration Files 13-1
13.1.1 Predefined Configurationsfor UNIX 13-1
13.1.2 User-defined Configurationfor UNIX 13-2
13.1.3 Predefined Configurationsfor NT 13-2

13.2 Customizing a Bootstrap Configuration 13-3
13.2.1 Bootstrap Configuration File Statement Definitions 13-3
13.2.2 SampleCustomization, 13-4

13.3 Running the Bootstrap Procedure 13-5
13.3.1 UNIDX oo 13-5
1332 NT o e 13-5

Chapter 14: Automatic UPS Product Startup and Shutdown 14-1

14.1 Configuring Y our Machine to Allow Automatic Startup/Shutdown . 14-1

14.2 Installing a UPS Product to Start and/or Stop Automatically 14-2
14.2.1 Determineif Auto Start/Stop FeatureisEnabled 14-2
14.2.2 Determineif Product is Appropriate for Autostart 14-3
14.2.3 EditControl File(S) 14-3
1424 SUMMENY .ot et 14-4

14.3 Disabling UPS Automatic Start/Stop of Processes 14-4

14.4 A Summary of the UPS Automatic Start-up Process. 14-5

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-11

Part IV: Product Developer’s Guide

(Part 1V islisted islisted in the front section of the table of contents.)

Chapter 15: UPSProduct Development: General Considerations 15-1
Chapter 16: BuildingUPSProducts, 16-1
Chapter 17: Making Products Available For Distribution 17-1
Chapter 18: Usingtemplate product to Build and Distribute UPS Products
... 18-1
Chapter 19: Checklist for Building and Distributing Products 19-1
Part V: Distribution Node Maintainer’s Guide
Chapter 20: Product Distribution Server Configuration 20-1
20.1 How A Server Respondsto a UPD Client Command 20-1
20.1.1 TheProcessfor upd addproduct 20-2
20.1.2 TheProcessforupdingal 20-2
20.2 Accounts Required for Distribution Server 20-3
20.2.1 Theupdadmin Accountccoiiiinenennn.. 20-3
20.2.2 Theftp Account, 20-3
20.2.3 Thewwwadm ACCOUNEottt e 20-4
20.3 Web Server Configuration, 20-5
20.3.1 Thecgi Scripts Used to Access Distribution Database 20-5
20.3.2 Restricting Accessto Distribution Database 20-6
20.3.3 Prerequisites for Modifying the Distribution Database 20-7
20.3.4 Permissions on Files Created in the Distribution Database 20-7
20.4 FTP Server Configurationoouiiiiiennannennn. 20-7
20.5 UPD ConfigurationItems i, 20-9
20.5.1 ArchiveFile Keywordsand ${SUFFIX} 20-9
20.5.2 Pre- and Postdeclare ACTIONS, 20-10
20.6 Administrative Tasksand Utilities. 20-10
20.6.1 Reporting FTP and Web Server Activity Using Ftpweblog .. 20-10
20.6.2 Restricting Access for Uploads to Distribution Database 20-11
20.6.3 Restricting Access for Downloads from Distribution Database 20-11
20.6.4 Restricting Distribution of Particular Products 20-11
20.6.5 Flagging Special Category Products Using Optionlist 20-12
20.6.6 Searching FTP Server LogfilesUsing Searchlog 20-13
20.7 Product DigtributionviaCD-ROMccovvnnn.. 20-14
Chapter 21: Configuration of the fnkits Product Distribution Node 21-1
21.1 UPS Configurationfor KITSDatabase 21-1
21.2 UPS Configuration for local Product Database 21-1
TOC-12 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

21.3 UPD Configurationuuiiii i, 21-2

21.3.1 updconfig FileOrganization............................ 21-2
21.3.2 The Recognized Product Categories 21-3
21.3.3 Matching Product Categories to updconfig Stanzas 21-3
21.3.4 Location and File Name Definitions 21-4
21.3.5 Pre- and Postdeclare ACTIONSt 21-4
21.4 frkitsServer MaintenanCevuiiiin s 21-6
21.4.1 User Accountsand Group Idsciin.... 21-6
21.4.2 Database and Configuration File Locations 21-6
21.4.3 Web Server and FTP Log File Information 21-7

Part VI: UPS and UPD Command Reference

Chapter 22: UPSCommand Reference 22-1
220 SEUPD it 22-3
22.1.1 Command SYNtaxXovie i 22-3
22.1.2 Commonly Used Options 22-3
22.1.3 AlVAIdOptionNs 22-3
22.1.4 MoreDetailed Descriptioncovviiiiiinn. 22-5
2215 setup EXamples. 22-6
22.2 UNSEIUD . o ittt et e e e e e 22-9
22.2.1 Command SYNtaxXo 22-9
2222 AllVAIdOptions 22-9
22.2.3 MoreDetailled Description, 22-11
2224 unsetup Examples. 22-12
22.3 UPSCONfIQUIE . ..ottt e e e 22-13
22.3.1 Command Syntaxoviiii i 22-13
22.3.2 Commonly Used Options 22-13
2233 Al VAIdOPLIONSo 22-13
22.3.4 MoreDetailled Description, 22-15
22.3.5 upsconfigureExamples i 22-15
224 UPSCOPY « ottt et e e e e e e 22-17
22.4.1 Command Syntaxouvii 22-17
22.4.2 Commonly Used Options 22-17
2243 Al VAIdOPLIONSo 22-17
22.4.4 OptionsVaidwith-G 22-19
22.4.5 MoreDetailed Description, 22-19
22.4.6 upscopy Examples 22-20
225 UpSdeClare 22-21
2251 Command Syntax 22-21
22.5.2 Commonly Used Optionsoiiiiiii e, 22-21
2253 Al VAIdOPLIONSo 22-22
22.5.4 MoreDetailed Description, 22-24
2255 upsdeclareExamples 22-26

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-13

22.6 UPSAEPENd e 22-27

22.6.1 Command Syntaxcuriiiiniii i 22-27
22.6.2 Commonly Used Optionsoiiiiii e 22-27
22.6.3 Al VAIdOpPLIONSo 22-27
22.6.4 upsdependExamples i 22-29
22,7 UPSEXISt o\ttt 22-31
22.7.1 Command Syntaxuvririii i 22-31
22.7.2 Commonly Used Optionsoiiiiii e, 22-31
2273 AIlVAIdOPLIONSo 22-31
22.7.4 MoreDetailled Description, 22-33
2275 upsexissExamples 22-33
22.8 UpSTlavor 22-35
22.8.1 Command Syntaxcuuiririiniii i 22-35
22.8.2 Commonly Used Options 22-35
2283 Al VAIdOPLIONSo 22-35
22.8.4 MoreDetailled Description, 22-36
22.85 upsflavorExamples 22-37
22,0 UPSOEL ..o 22-39
22.9.1 Command Syntaxcouuiriieii it 22-39
22.9.2 All validoptionso 22-39
2293 upsgetExample 22-40
2210 Upshelp ... e 22-41
22.10.1 upshelpExample i 22-41
2221 upslist ..o 22-43
22.11.1 Command SYyNtaXvviv i 22-43
22.11.2 Commonly Used Optionsoiviii i 22-43
22113 Al VAIdOPLioNSo 22-43
22.11.4 More Detailed Descriptionccciiiiienan.. 22-45
22115 upslistExamples i 22-49
2212 upsSMOdify 22-55
22.12.1 Command SYyNtaXoviv e 22-55
22.12.2 Commonly Used Optionsooiviii i 22-55
22123 Al VAIdOpLioNs 22-55
22.12.4 More Detailed Descriptionccoiiiiinan.. 22-56
22.125 upsmodify Example. 22-57
2213 UPSStart .. 22-59
22.13.1 Command SYyNtaXuvii i 22-59
22.13.2 Commonly Used Optionsoiiii i 22-59
22133 Al VAIdOpLioNs 22-59
22.13.4 More Detailed Descriptionccciviiinnan.. 22-61
22135 upsstart Examples 22-61
22,04 UPSSIOD v ittt 22-63
22.14.1 Command SYyNtaXouvi i 22-63
22.14.2 Commonly Used Optionscciviii i 22-63
22143 Al VAIdOpLioNs 22-63

TOC-14 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

22.14.4 More Detailed Descriptioncoviiiiinan.. 22-65

22145 upsstopExamples 22-65
2215 upsStallor . ..o 22-67
22.15.1 Command SyNtaXoviuri i 22-67
22.15.2 Commonly Used Optionsooiiiii i 22-67
22153 Al VAIdOpLions 22-67
22.15.4 More Detailed Descriptioncoviiiinan.. 22-69
22.155 upstailorExample 22-69
2216 UPSTOUCN ... 22-71
22.16.1 Command SyntaXcouririii 22-71
22.16.2 Commonly UsedOptionscoviiiiiinnnnn, 22-71
22.16.3 Al VaIdOptions 22-71
22.16.4 upstouchExample i i, 22-72
22.17 UpSUNCONFIQUIE ..ottt e e 22-73
22.17.1 Command SYNtaXouuiin i 22-73
22.17.2 Commonly UsedOptionsciviiiii e, 22-73
22173 Al VAIdOPLioNSo 22-73
22.17.4 MoreDetailed Descriptionoviiiiiinon.. 22-75
22.17.5 upsunconfigureExample, 22-75
2218 upsundeclare 22-77
22.18.1 Command SYNtaXouuiirii i 22-77
22.18.2 Commonly Used Optionsooiiiii i 22-77
22183 Al VAIdOPLioNSot 22-78
22.18.4 MoreDetailed Descriptionc.ccoiviiiiion.. 22-79
22.185 upsundeclareExamples oo, 22-80
22.09 UPSVENifY .o e 22-81
22.19.1 Command SYNtaXouuiin i 22-81
22.19.2 Commonly Used Optionscoiiiii i 22-81
22193 Al VAIdOPLioNSot 22-81
22.19.4 upsverify Example. 22-83
Chapter 23: UPD/UPP Command Reference....................... 23-1
231 updaddproduct 23-3
23.1.1 Command SYyNtaxXo 23-3
23.1.2 Commonly Used Options 23-4
2313 AIlVAIdOptions 23-4
23.1.4 MoreDetailed Descriptioncovviiiiiiin.n. 23-7
23.1.5 Adding Productsto fnkits.fnal.gov 23-8
23.1.6 upd addproduct Examples 23-9
23.2 upd cloneproduct 23-11
23.2.1 Command Syntaxuviii i 23-11
2322 AIlVAIdOPLIONSo 23-11
23.2.3 OptionsVaidwith-G 23-12
23.2.4 updcloneproduct Example, 23-12
233 upddelproduct e 23-13
23.3.1 Command Syntaxot 23-13
23.3.2 Commonly Used Options 23-13

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-15

2333 AllVAEIdOptions 23-13

23.3.4 upddelproduct Example o, 23-14
234 upddepend 23-15
23.4.1 Command Syntaxuvi i 23-15
2342 OptiONS . ..ot 23-15
2343 upddepend Examples. 23-15
235 UPd XISt . ot e 23-17
2351 Command Syntaxccuiriiiii i 23-17
2352 OptioNSot 23-17
2353 updexistExamples. 23-17
236 updfetch 23-19
23.6.1 Command Syntaxouuirii 23-19
23.6.2 Commonly Used Optionsoiviiiinnnn, 23-19
23.6.3 Al VAIdOpLIONSo 23-19
23.6.4 updfetchExamples 23-21
23,7 UPd QL ..o e 23-23
23.7.1 Command Syntaxouuiiii e 23-23
23.7.2 OPLIONS . ..ot 23-23
238 updinstall e 23-25
23.8.1 Command Syntaxc.ouuririiii i 23-25
23.8.2 Commonly Used Options 23-25
2383 Al VAIdOPLIONSo 23-25
23.8.4 OptionsVaidwith-G 23-28
23.8.5 MoreDetailed Descriptionc.cciiiiiiinon.. 23-28
23.8.6 updinstall Examples i 23-29
239 Upd list .. 23-31
23.9.1 Command Syntaxiurii e 23-31
23.9.2 OpliONS ...ttt 23-31
2393 updlistExamples 23-31
23.10 upd MOdpProduct 23-33
23.10.1 Command SYyNtaXovrereini i 23-33
23.10.2 Commonly Used Optionscviii i 23-33
23.10.3 Al VAIdOpLions 23-34
23.10.4 MoreDetailed Descriptionccciiiiinnan.. 23-35
23.10.5 upd modproduct Examples e, 23-36
23.11 upd repproduct 23-39
23.11.1 Command SYyNtaXovvve i 23-39
23112 OPtiONS . .ottt e 23-40
23.11.3 updrepproduct Examples i 23-40
2312 updupdate e 23-41
23.12.1 Command SYyNtaXoviv e 23-41
23.12.2 Commonly Used Options 23-41
23123 Al VAIdOPLioNSot 23-41
23.12.4 updupdateExamples 23-43

TOC-16 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

2313 upd Verify .. e 23-45

23.13.1 Command SyNtaXoviui i 23-45
23132 OptiONS . ..ottt 23-45
23 0 U ot 23-47
23.14.1 Command SYyNtaXuviuri i 23-47
23.14.2 Al VAIdOpLions 23-47
23143 UppEXamples 23-47
Chapter 24: Generic Command Option Descriptions 24-1
24.1 Alphabetical OptionListing 24-1
24.2 More Information on Selected Options 24-7
24,2,] - 24-7
24,22 -H e 24-7
24,23 K 24-7
24284 Q. o 24-8
24,2, 5 NV 24-9
Chapter 25: UPS/UPD Command Usagecoivuiinnnn.. 25-1
25 SYNEAX . ot 25-1
25.1.1 Order of Command LineElements 25-1
25.1.2 SpecifyingVersion/Chain, 25-1
25.1.3 GroupingOptionFlagso 25-2
25.1.4 Specifying ArgumentstoOptions 25-2
25.1.5 Embedded Spacesin Option Arguments 25-2
25.1.6 Invaid Option Argumentsc.cooviiinenenn... 25-3
25.1.7 Specifying Multiple ProductsinaSingleCommand 25-3
25.1.8 Multiple Occurrencesof SameOptionFlag 25-3
25.1.9 Useof Wildcards ...y 254
25.2 OptIONS . . .ot 25-4
Chapter 26: Product Instance Matching in UPS/UPD Commands 26-1
26.1 Database Selection Algorithm 26-1
26.0.0 UPS. ... e 26-1
26.0.2 UPD ... 26-2
26.2 Instance Matching within Selected Database 26-3
26.2.1 Where Does Instance Matching TakePlace? 26-3
26.2.2 Flavor SElection ... 26-3
26.2.3 Quadlifiers: UseinInstanceMatching 26-4
26.2.4 Flavor and Qualifier Matching Algorithm 26-4

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-17

Part VII: Administrator’s Reference

Chapter 27: Information Storage Format in Database and Configuration Files

27-1

27.1 Overview of FIle Types ...t 27-1
27.2 Keywords: Information StorageFormat 27-2
27.2.1 WhatisaKeyword? 27-2
27.2.2 Keyword SyntaXcoviiii i 27-2
27.2.3 User-Defined Keywords oo 27-2
27.2.4 How UPS/UPD SetsKeywordVaues 27-3

27.3 Flexibility of FileSyntax o ... 27-3
27.4 Listof Supported Keywordscco i 27-3
27.5 Syntax for Assigning KeywordValues 27-8
27.6 Usage Noteson Particular Keywords 27-9
27.6.1 COMPILE_DIR, COMPILE_FILE and @COMPILE_FILE .. 27-9
27.6.2 PROD_DIR_PREFIX, PROD_DIR and @PROD _DIR 27-9
27.6.3 STATISTICS ... e 27-9
27.6.4 TABLE FILEand @TABLE FILE 27-10
27.6.5 UPS DIRand @UPS DIR ..., 27-11
27.6.6 _UPD_OVERLAY ... e 27-11
Chapter 28: VersionFiles.......... ... i, 28-1
28.1 About VersionFiles 28-1
28.2 KeywordsusedinVersionFiles 28-2
283 VeasonFileExamples 28-3
28.3.1 SampleVersionFileforexmhvl 6 6 28-3
28.3.2 Sampleversionfileforfoov2 O 28-4

28.4 Determination of ups Directory and Table File Locations 28-5
Chapter 29: ChainFiles e 29-1
29.1 About ChainFiles 29-1
29.2 KeywordsUsedinChainFiles............ 29-2
29.3 ChainFileExamples i 29-3
29.3.1 Samplechainfileforexmhvl 6 6 29-3
29.3.2 Samplechainfileforfoov2 O 29-3
Chapter 30: TheUPSConfigurationFile 30-1
30.1 dbconfig FileOrganizationcciiiivenan.. 30-1
30.2 KeywordsUsedindbconfig 30-1
30.3 SampledbconfigFile 30-2
Chapter 31: TheUPD ConfigurationFile 31-1
31.1 updconfig FileOrganizationc.ciiuiinnen... 31-1
31.2 Product Instance Identification and Matching 31-2

TOC-18 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

31.3 Defining Locationsfor Product Files......................... 31-3

31.3.1 RequiredLocationsccoviiriiiininnanan.. 31-3
31.3.2 Read-Only Variables Usable in Location Definitions 31-4
31.3.3 Sample Location Definitions, 31-5
31.4 Pre- and Postdeclare ACtionSt 31-5
31.4.1 ACTIONKeywordValues.ccovviiiiinin.n. 31-6
31.4.2 Theexecute Function, 31-6
315 EXamples ... 31-7
31.5.1 Generic TemplateupdconfigFile........................ 31-7
31.5.2 Didtribution from thefnkitsNodeOnly 31-8
31.5.3 Customized Treatment of ups Directory and Table Files 31-8
31.5.4 Implementing Multiple Configurations 31-9
31.5.5 Sample Configuration for AFS Space Using ACTIONS 31-10
31.5.6 Didtribution Node Configuration 31-10
Chapter 32: TheUPP SubscriptionFile 32-1
32.1 UPP SubscriptionFileHeader 32-1
322 SHANZAS . . . oo 32-2
32.2.1 Product Instance Identification.......................... 32-2
32.2.2 Conditionsand Instructionsccovivunienn... 32-2
323 Examples e 32-3
32.3.1 Sample UPP SubscriptionFile 32-3
32.3.2 A Longer Annotated Example, 32-4

Part VIII: Developer’'s Reference

(Part VIl islisted islisted in the front section of the table of contents.)

Chapter 33: Actionsand ACTION Keyword Values................. 33-1
Chapter 34: Functionsused in Actionsccovu.... 34-1
Chapter 35: TableFiles........ i e 35-1
Chapter 36: ScriptsYou May Need to Providewith aProduct 36-1
Chapter 37: Useof Compile Scriptsin TableFiles 37-1
Chapter 38: Creating and FormattingManPages 38-1
GlOSSaIY .ttt e GLO-1
INEX . IDX-1

Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C) TOC-19

TOC-20 Complete Guide and Reference Manual for UPS, UPD and UPP v4 (GU0014C)

About this Manual

This chapter provides an introduction to the Complete Guide and Reference Manual for UPS,
UPD and UPP v4. |n particular you will find:

« the overall structure, the purpose and the intended audience of the manual
« what parts of the manual you need

« where to obtain this manual and where to look for updates

« the typeface conventions and symbol s used throughout the document

* an invitation to readers to send us comments

This manual is published in three submanuals: GU0014A, GU0014B, and GU0014C. The
structure of the document and its division into these sections is discussed in the following
sections.

1. Document Structure, Purpose and Intended Audiences

The UPSand UPD v4 Reference Manual isintended for several different user groups as listed
on the next page. To best accommodate the different types of users, the manual is divided into
five user guides (Parts 1-V):

* Part | Overview and End User’s Guide

* Part Il Product Installer’s Guide

* Part 111 System Administrator’s Guide

* Part IV Product Developer’s Guide

* Part V Distribution Node Maintainer’s Guide
and three reference manuals (Parts VI-VI1I)

* Part VI UPSand UPD Command Reference

* Part VII Administrator’'s Reference

« Part VIII Developer’s Reference

The user guides explain and illustrate the UPS/UPD/UPP tasks associated with each user
group. The reference guides provide detailed information on commands, concepts, file
structure/contents, and so on. On the following page is a guide to which parts of the manual
you are likely to need, according to your job functions. Notice that we recommend Parts | and
VI for al users:

About this Manual INT-1

Parts

User Functions

A: For All Users

Part | Overview and End User’s Guide

End Users:

Part VI UPSand UPD Command Reference

List product information in a UPS database on
auser system;

Access installed software products

Access FermiTool s2 software products

(Other user groups' functions described later
intable)

B: For Product Installers, UPS Database Administrators, System Administrators of User

Machines, Distribution Node Maintainers

Part 11 Product Installer’s Guide

Product Installers:

Install software products from a UPS product
distribution node into a UPS database on a
user system;

Install products into the AFS-space UPS data-
base

Part 111 System Administrator’s Guide
and
Part VII Administrator’s Reference

System Administrators, UPS Database Admin-
istrators:

Maintain UPS productsin a UPS database;
Install UPSY'UPD/UPP on a user system;
Configure UPS on a user system;

Configure UPD on a user system;

Configure UPP on a user system;

Configure an installed product to start/stop
automatically at boottime/shutdown

Part V Distribution Node Maintainer’s Guide

Distribution Node Maintainers:

Install UPS/UPD on adistribution system;
Configure UPS and UPD on adistribution
system,

Configure Web and anonymous FT P servers
on adistribution system

Maintain UPS database on a distribution sys-
tem

C: Product Developers

Part IV Product Developer’s Guide

Product Developers and Maintainers:

Part V11l Developer’s Reference

Develop and maintain software products that
areintended to be distributed in accordance
with UPS standards;

Adapt pre-existing or third-party software to
conform to UPS standards;

Distribute products

a. Fermilab-written software products that are made publicly available.

INT-2

About thisManual

The table above lists rather generally the topics that the manual covers. Notethat it is not the
(? purpose of this document to provide information on:

« general UNIX system administration
« general UNIX or Fermilab information (see instead UNIX at Fermilab, GU0001)
« the use of any particular software product other than UPS/UPD/UPP

CDF and DO collaborators: Also see A UNIX Based Software Management System
(GUO013) at

http://wwe cdf.fnal.gov/offline/code_managenent/run2_cngt/run
2_cngt . ht m tofind information describing how UPS and UPD have been implemented
inyour experiments code management systems.

2. Availability

Copies of the UPSand UPD v4 Reference Manual (GUO014A, B, and C), can be obtained
from the following sources:

Web
http://ww. fnal . gov/ docs/ product s/ ups/ Ref eren
ceManual /

This can be accessed under Documentation on the Computing
Division home page. Search using any of the following keywords:
afs, develop(ment), distribute(tion), fermitools, GU0014,

install (ation), kits, maintain(tenance), man page, product, system
administration, unix, upd, upp, ups

Paper Copies Wilson Hall, 8th floor, NE (just across from what used to be the
Computing Division library)

3. Updates

Pending subsequent releases of this manual, updates will be maintained on the Web with the
on-line version of the manual. To get there from the Computing Division home page, select
Documentation, request GU0014 and follow the pointers (see “Web” under section 2.
Availability).

4. Conventions

The following notational conventions are used in this document:

bold Used for product names (e.g., UPS).

italic Used to emphasize aword or concept in the text. Also
used to indicate logon ids and node names.

typewiter Used for filenames, pathnames, contents of files, output of
commands.

About this Manual INT-3

typewiter-bold
[...]

%

{}

Used to indicate commands and prompts.

In commands, sgquare brackets indicate optional command
arguments and options.

When shown in acommand example (e.g., X| Y| z),
separates a series of options from which one may or must
be chosen (dependsif enclosed in square brackets). In
UNIX commands, used to pipe output of preceding
command to the following one.

Single vertical quotes indicate apostrophes in commands.

Double vertical quotesindicate double quotesin
commands

In acommand, means that a repetition of the preceding
parameter or argument is allowed.

Prompt for C shell family commands (%is also used
throughout this document when a command works for
both shell families).

Prompt for Bourne shell family commands; also standard
UNIX prefix for environment variables (e.g., $VAR means
“the value to which VAR is set”).

UNIX standard quoting character; used in commands
throughout the manual to indicate that the command
continues to the next line

In commands, variables, pathnames and filenames, angle
brackets indicate strings for which reader must make a
context-appropriate substitution. For example,
$<PRODUCT>_DIR becomes $SEMACS DIR for the
product emacs.

Inlocal read-only variables, e.g., §{UPS PROD DIR},
string should be used as shown with the {}.

All command examples are followed by an implicit carriage return key.

Some of the files discussed in this document are shell family-specific, and thus come in pairs.
Their filenames carry the extensions . sh and . csh. We often refer to apair of thesefiles

as fil enane.[c]sh.

The following symbols are used throughout this document to draw your attention to specific

itemsin thetext:

‘ A “bomb”; this refers to something important you need to know in order to avoid a pitfall.

gj__;. This symbol isintended to draw your attention to a useful hint.

INT-4

About thisManual

5. Your Comments are Welcomel!

The UPSand UPD v4 Reference Manual may contain some errors, however we endeavor to
minimize the error count! We encourage all the readers of this document to report back to us;

« errors or inconsistencies that we have overlooked

« any parts of the manual that are confusing or unhelpful -- please offer constructive
suggestions!

« other topics to include (keeping in mind the purpose of the manual)
« tricks, hints or ideas that other users might find helpful
Send your comments via email to cdlibrary@fnal.gov.

About this Manual INT-5

INT-6 About thisManual

Part IV Product Developer’s Guide

Chapter 15: UPSProduct Development: General Considerations

This chapter discusses the UPS product development methodology and tools
that can be used in product development. It also provides recommendations
for organizing your local product development area and the individual
product root directories you will need to create.

Chapter 16: Building UPS Products

In this chapter we describe the steps you need to take in order to prepare a
product for inclusion into the UPS framework and then to prepare it for
distribution. We go through the steps for a ssimple case, then discuss the
additional steps that may be required in more complex situations. Some
sample auxiliary files are provided at the end.

Chapter 17: Making Products Available For Distribution

This chapter describes the processes of adding, updating, deleting and
“cloning” product instances or components on aproduct distribution system.
Information on creating tar files, using Fermilab CV Srepositories and
announcing productsis also provided.

Chapter 18: Using template_product to Build and Distribute UPS
Products

In this chapter we describe the template product product, and show how to
use it to build and distribute a product.

Chapter 19: Checklist for Building and Distributing Products

In this chapter we summarize the steps for preparing to build a product,
building it and distributing it. We include information about making the
appropriate announcements when a new or upgraded product is available.

Product Developer’s Guide V-1

V-2 Product Developer’ sGuide

Chapter 15: UPS Product Development:

General Consider ations

This chapter discusses the UPS product development methodology and tools that can be used
in product development. It also provides recommendations for organizing your local product
development area and the individual product root directories you will need to create.

15.1 Product Development Considerations
and Recommendations

In this section we will provide some guidelines for product development as it affects the
product’s inclusion in the UPS framework.

Simple scripts which run on any architecture are naturally quite straightforward to implement
under UPS. Products which are obtained from the outside world (third party) as executable
images with no source code are also generally straightforward. The ones that get complicated
are the products which must be compiled and/or otherwise built for each and every supported
architecture.

15.1.1 All Products (Locally Developed and Third Party)

Shell Independence

The product should run the same way under both shell families, sh and csh. If the product
requires any actions to take place before it will run (e.g., its bi n directory added to your
$PATH, some environment variables set), provide atable file containing these actions. The
UPS environment is described in Chapter 1. Overview of UPS, UPD and UPP v4 and table
filesin Chapter 35: Table Files. The functions supported in tablefiles are designed towork in
a shell-independent manner, in general.

Flavor Declaration in UPS

On your development system, we recommend that you declare your products according to the
fully specified flavor of the machine on which you build them (or on which they were built).
We consider thisto be very important, especially if your target systems contain or will ever
contain mixed OS releases (e.g., IRIX+6.2 and IRIX+6.5). Thiswill help to avoid problems
when anew OS release doesn't run images built on an older one, or vice-versa. You don’t
want to have to go back and comb out which OS release a particular product instance was built
for, you want to be able to tell immediately from looking at the database. Installers and users
also need thisinformation to facilitate their database maintenance.

UPS Product Development: General Considerations 15-1

P

Products which have no flavor-dependence at all (shell scripts, for instance), should be
declared as NULL to the database (use the “zero” option, - 0; see Chapter 24: Generic
Command Option Descriptions). For other products, include the entire flavor string of the
build platform in the declaration, or the major portion of that string. For example, if you build
on an OSF1 machine running V3.2, declare your products with the flavor OSF1+V 3.2 or
OSF1+V3rather than just OSF1 (e.g., use theflavor level corresponding to the options - 3 or
-2 ratherthan - 1)

Policy Regarding Use of /usr/local/bin

Outside Fermilab, in the UNIX world at large, products typically get put in

/usr/ 1 ocal /bin. Withthisintheuser's $PATH, al the products are accessible. This
practice isinconsistent with the goal of UPS to provide concurrent versions of products.
Therefore only products specially approved by the FUE working group may write into
/usr/ 1 ocal / bi n. Noother products should writeto thisarea, or to any other area
within /usr/ | ocal .

15.1.2 Productsthat You Develop

If you're writing your own product for implementation within UPS, you have the luxury (and,
we might add, the responsibility) of creating it such that it exploits the important features of
UPS, thus making it easy for the user to install and run, and easy for you or another devel oper
to maintain in the future. We urge you to follow the guidelines we present here.

Self-Containment and L ocation Deter mination

First, design the product such that it is self-contained. 1t should identify itslocation and the
location of any required files at run time (as opposed to compiletime). You as the product
developer have total control over the structure and contents of the product root directory, but
no control at al over where the product root directory will reside on atarget system.

If you write the product such that it calculatesits location at compiletime, you'll be putting the
hard-coded path to your devel opment environment into the image -- most likely not the correct
path on the user machine.

You can choose to define the environment variable $<PRODUCT>_DIR, which points to the
product root directory. In UPSv4, thisvariableis no longer always necessary since much of
its usefulnessis taken over by the local read-only variable ${ UPS PROD_DIR}, described in
section 34.6 Local Read-Only Variables Available to Functions. However, users will still find
$<PRODUCT>_DIR to be useful since they will have accessto it as long as the product is
setup.

Asan example of the use of ${ UPS_PROD_DIR}, take myproduct written in per|l which
requiresthefile I i b/ nyprod- headers. pl . You should refer to thisfilein the perl code
as $ENV: : { MYPROD_PERL_LI B}/ mypr od- header s. pl rather than by itsfull path,
eg., /path/to/lib/ nyprod-headers. pl. Inthetablefile, set

MYPROD PERL LI B to ${UPS PROD DI R}/Iib. Youshould make no assumptions
about where users will put the file.

As stated above, products should not use or copy filesinto the areasunder / usr/ | ocal .

15-2 UPS Product Development: General Considerations

Reproducible Build Procedure

All products should be built using abuild script in order to ensure that the build procedure is
reproducible. If your product is at all complex, we recommend that you use Makefiles for this
purpose. We have created atemplate product for creating UPS products, described in Chapter
18: Using template product to Build and Distribute UPS Products. It includes
Fermi-standard Makefiles, and automates much of the process. The general UNIX make
utility and the associated M akefiles are beyond the scope of this document, but the subject is
introduced in UNIX at Fermilab, and treated in many standard UNIX texts.

System Independence

The various flavors of UNIX have many differences. You will generally have to release
separate instances of your (compiled) products for the different flavors. However, the more
you are able to insulate your product from flavor/rel ease dependencies, the easier your product
will be to maintain, and the lessrigid it will appear to installers and users.

15.1.3 Third-Party Products Requiring a Hard-Coded
Path

If you'reinstalling athird-party product, downloaded from the Web or elsewhere, you may not
have the opportunity to code it such that it identifiesits location at run time based on
${UPS_PROD_DIR} or the $<PRODUCT>_DIR environment variable. Whereas many
products never need to know their location (they only need to be in your $PATH, for example),
many other products do need to know their location in order to locate auxiliary commands,
libraries, utilities, and so on.

Techniquesfor Implementing these Products

For those that do, the technical note TN0086 Use of "/usr/local/products’ now deprecated,
on-lineat http://ww.fnal.gov/docs/ TN TNO086/t n0086. ht nl , describes
recommended techniques for implementing the products. Please refer to it for information.
The three approaches it describes are, briefly:

« For aproduct that is already setup and which contains a script that requires an interpreter,
start the script with #! / usr/ bi n/ env <i nterpreter> (eg.,
#! [usr/ bi n/ env perl). Theenv program will run thefirst copy of theinterpreter
it finds on your command search path, and your script is then executable.

* Create a“wrapper” shell script which sets up the UPS environment, sets up your
product, and then invokes the appropriate commands. (An exampleiswww v2_6a.)

» Sometimes getting a product setup before one of its scriptsisinvoked is not practical,
and wrapper scripts may be unacceptably slow to start up. In cases where the product is
considered important enough by the FUE working group that it must work properly even
in the absence of UPS, a*“trampoline” executable is provided, usualy in
usr/1 ocal / bi n. Thewrapper script should contain
#! [/ path/to/tranpoline.

When the product is configured, its CONFIGURE action inserts the product path into the
trampoline executable. The wrapper script is then executable. Note that these products
generally need to be declared as root.

UPS Product Development: General Considerations 15-3

In the past for UPSv3we usedthe / usr/ | ocal / product s convention. We include
thisinformation for reference purposes only. This convention had serious drawbacks. The
old (now deprecated) procedure was standard only on fully FUE-compliant systems
(defined in the on-line document DR0009), and required that you:

« configure, build, and/or (re-)code the product so that the hard-coded path it usesis
/usr/local /products/{product}/{version} (eg.,
/usr/1local /products/tk/v4_2a).

ewritea confi gur e script which creates the directory
/usr/ 1 ocal/products/{product}, and createsinit the symbolic link
{version} backtothereal product root directory (e.g.,
/usr/local/products/tk/v4_ 2a isasymboliclink to
/ pat h/ t o/ product s/ OSF1+V3/t k/ v4_2a).

ewritea current scriptthat createsasymboliclink called current inthesame
directory, pointing to the link for the instance which is declared as current (e.g.,
{fusr/1ocal/products/tk/current isasymboliclinkto
[fusr/1ocal/products/tk/v4_2a).

Examples of Products Requiring Hard-coded Paths

Here are examples of situationsin which hard-coded paths are unavoidable:
* Pre-built products which have hard-coded paths.

* Products that you can rebuild, but which were not coded with the idea of calculating
where thefiles sit at runtime. You need to tell them where to look for files at compile
time, and this leads to hard-coded paths in the images.t

» Commands that are not executed in the context of a shell, but rather as a program. An
exampleisthe mh utility slocal (for automatically sorting and foldering your incoming
mh mail). Thiscommand is called viaacommand line in one of the configuration files
(. f orwar d).

You can't usetheconstruct “| ${MH DIR}/1i b/slocal -user joe" to
identify slocal because the program running this command will not expand the

$ MH_DIR} environment variable. You also don’t want to spell out the whole actual
path because you'd haveto edit the . f orwar d file every time anew version of mhis
released.

* Cgi scripts, rsh scripts and other situations in which you can't be sure that the product
will necessarily have been setup when it is called by another one, and it needs to work
anyway. We recommend that you consult with the UAS group (uas-group@fnal.gov) to
determine the best course of action. Frequently you can create product configuration
scripts that copy or link the product files into the correct location on the target node. In
some cases for cgi scripts, you can have your Web server setup the product and pass the
relevant environment variables.

1. Most vendors (freeware, shareware, and the few paid packages where you get the
source code and rebuild it) now make it possible to modify the Makefiles so that you can
decide where you want the output files, images, and so on, to go. Unfortunately, these are
still frequently hard-coded at compiletime, not runtime. Therefore, packages that you
build in this manner on your development system will not be right when installed on auser
system with a different product root directory path.

154 UPS Product Development: General Considerations

15.2 Toolsfor Developing and/or Packaging
Products

The tools that we introduce in this section can be used separately or together. They are all
available as UPS productsin Kl TS. See the on-line documentation Integrating buildmanager,
cvs, template product,and upd at

http://ww. fnal . gov/ docs/ product s/ bui | dnmanager/ I ntegrating. htm .

15.2.1 Buildmanager

The buildmanager application isaconfigurable tool which lets you build software on multiple
systems simultaneously, in an organized and consistent fashion. It allows you to set up
standardized build sequences and define actions to be performed automatically. It can stop if
things go wrong, and allows interaction with various build systemsto correct problems. Itis
availableasaUPS product in Kl TS. Any system to which you can telnet and run commands
can be used as a build system with buildmanager. See the on-line documentation at

htt p: //wwv. fnal . gov/ docs/ product s/ bui | dnanager/ .

15.2.2 CVS

It isa common practice to maintain a product’s source code as well asits Makefile and UPS
management filesin a CV S repository for development and maintenance. CV S allows each
developer to check out files into a private working directory and to modify them as necessary.
With CV S you can maintain all the different versions and flavorsin a single work area, and
you can pull them out to the separate nodes as needed. Devel opers working with prebuilt
binaries (downloaded from the Web or purchased from a vendor) can use CV S for just the
Makefile and UPS management files (e.g., thelocal READVE and | NSTALL files, thetable
file, tests, documentation, and so on) so that they can be properly source-controlled.
Documentation for CV'S can be found on-line at

http://ww. fnal . gov/ docs/ product s/ cvs/.

It isuseful to be able to use UPS to setup these checked-out areas. One way that this can be
accomplished is by declaring the checked-out areato either the main or a private UPS
database, but this is often cumbersome, as these checked-out areas are by nature fairly
transient.

A better solution isto exploit the UPS capability of setting up a product instance without
having it actually declared to any database. To do this, you simply need to supply the set up
command with all of the necessary information, shown here:

% setup <product> -r /your/checked/out/area -M<tableFileDir>\
-m<tableFile> -q <qualifierList> -f <flavor>

UPS Product Development: General Considerations 155

15.2.3 Template product

To simplify and somewhat automate the process of building UPS products, we have designed
the product template product. Oncethisproduct isinstalled on your system, it can be cloned
into anew product area and customized to the new product. template product can be used to
build products of all types (shell script, pre-built binary, source code). We discuss this product
in detail in Chapter 18: Using template product to Build and Distribute UPS Products.

15.3 Directory Structure for a UPS Product

In

stance

Thetop level directory of a UPS product instance is called the product root directory, and in
general it should contain files and subdirectories in which almost everything related to the
product instanceresides: the executables, the library files, the documentation, and so on. The
ups directory files(i.e., the UPS metadata) and the table file usually reside here, but are not
required to do so.

UPSisvery lenient in the directory structure it allows. Nothing isrequired in all situations
beyond a product root directory. Normally product instances have atable file containing
actions that are run during operations like product installation and setup.

We recommend that you follow a few directory structure guidelines ssmply to conformto a
generally recognized format. Thiswill make it easy for yourself and othersto identify each
file and directory later on. The following is arelatively complete sample directory structure
underneath the product root directory. Most products won't require al of these elements. On
the other hand, you may include other directories and/or files not listed here. Elementswhich
we strongly recommend that you provide (in addition to the executables) for every product
includea README file, man pages, a user guide, test scripts and example files.

READNVE text file containing information such as origin of the product (by
whom, from where, etc.), support level, support group/person,
caveats and known bugs (may be contained inthe ups directory)

bin directory containing the executabl e(s)

ups directory containing metadata files and other executable and data
files used during implementation and invocation; may also contain
I NSTALL_NOTE (described below) file and the directories
toman, tol nfo, tonews and tohtm . Oftenthetablefile
resides here. (Thisdirectory isno longer arequired element of a
UPS product.)

Default location of the ups directory is directly underneath the
product root (for compatibility with UPS v3), but it may reside
anywhere.

ups/ I NSTALL_NOTE text file containing a detailed description of any installation actions
that are more easily performed directly by the installer rather than
by a script (beyond or instead of running conf i gure and/or
tail or and/or current). Thisshould not beascript. Thisfile
is not usually needed. If provided, mention itinthe READVME file
so that product installers know to run it.

15-6

UPS Product Development: General Considerations

lib
src
i ncl ude

doc

cat nan

ht m

news

Info

t est

exanpl es

directory containing libraries
directory containing source code
directory containing include files

directory containing a user guide and any other documentation as
appropriate; should include the source files (e.g., LaTeX, Word) as
well asthe printable files (e.g., PostScript)

directory containing unformatted man pages. The files get copied
into the location specified in

$PRODUCTS/ . upsfil es/ dbconfi g (keyword
MAN_TARGET _DIR).

Default location (for compatibility with UPS v3):
ups/ t oman/ man

directory containing formatted man pages. Thefilesget copied into
thelocation specifiedin $PRODUCTS/ . upsfi | es/ dbconfi g
(keyword CATMAN_TARGET _DIR).

Default location (for compatibility with UPS v3):
ups/ t oman/ cat nan

directory containing the html version of the user guide and any
other documentation as appropriate (automatic copy of filesto
standard area defined by HTML_TARGET_DIR not implemented
in UPS v4)

Default location (for compatibility with UPSv3): ups/t oht m

directory containing news files to be posted to a newsgroup
(automatic copy of filesto standard area defined by
NEWS _TARGET_DIR not implemented in UPS v4)

Default location (for compatibility with UPSv3): ups/t onews

directory containing any text files that are to be displayed asalogin
announcement viathe Info feature. Thefiles get copied into the
location specified in $PRODUCTS/ . upsfi | es/ dbconfi g
(keyword INFO_TARGET_DIR). Infoisgeneraly used to
communicate to users about the Fermilab computing systems
events, (e.g., shutdowns), software upgrades and other
systems-related information.

Default location (for compatibility with UPSv3): ups/tol nfo
directory containing test scripts and any other test-related files

directory containing example files to help users learn how to use
the product

Product Documentation Storage

Each different type of product documentation (e.g., man pages, html files, PostScript files, and
S0 on) must reside in a separate subdirectory. The subdirectories usually reside under the
product root directory, but do not have to. In the product’s tablefile, you should use the

UPS Product Development: General Considerations 157

keywords XXX_SOURCE_DIR aslisted in section 27.4 List of Supported Keywords (e.g.,
MAN_SOURCE_DIR, INFO_SOURCE_DIR) to identify the directory in which each form of
documentation is maintained. For example:

CATMAN_SOURCE_DI R = ${ UPS_PROD DI R}/ cat man

MAN_SCQURCE_DI R = ${UPS_PRCD_DI R}/ man

| NFO_SOURCE_DI R = ${UPS_PROD DI R}/Info
UPS currently requiresthat all filesin adirectory specified by XXX _SOURCE_DIR be of the
corresponding file type; you cannot mix file types.
The ups/toman directory and its subdirectories man, cat man and t ol nfo areused
as defaults in UPS v4 for backwards compatibility. This structure is not necessarily our
recommendation. If a product comes with man pages, Info files, html files and so on, we
recommend that you leave them where they are, and simply specify their locations in the table

file. If you arewriting your own, you can put them in subdirectories directly under the product
root directory, which is generally the most convenient place.

In UPSv4, NEWS SOURCE _DIR and HTML_SOURCE_DIR are not implemented.

15-8 UPS Product Development: General Considerations

Chapter 16: Building UPS Products

In this chapter we describe the steps you need to take in order to prepare a product for inclusion
into the UPS framework and then to prepare it for distribution. We go through the steps for a
simple case, then discuss the additional steps that may be required in more complex situations.
Some sample auxiliary files are provided at the end.

16.1 Basic Stepsfor Making a UPS Product

In this section we will go through the steps of making a simple, unflavored product compatible
with UPS. The stepsweillustratein this section are also valid for more complicated situations,
but additional steps are generally needed in those cases. These will be noted later in the
chapter. We'll use the standard “Hello world” example, with a product hello, version v1 0, of
flavor NULL. The executable, which isascript in this case, consists of the following text:

#! / bi n/ sh
echo "Hell o world"

Thisisasimple case. You don't need any Makefiles or scripts on how to build this product,
because it doesn’t get built. 1t runson all flavors of UNIX without modification, so you should
declareit with theflavor NULL. It would be niceto havethe $HELLO DI R/ bi n directory
added to your $PATH to use the product, and that’s what the setup action will do. The unsetup
action will remove $HELLO DI R/ bi n from your $PATH. No configuration or tailoring is
needed, nor are any special actions when the product is declared current.

The steps you need to complete are:
1) Create adirectory hierarchy for the product and its related files.
2) Creste a README file.

3) Create atable filein the location you want it to reside (usually either in the
product-specific directory directly underneath your UPS devel opment database or in
theups directory, if your product has one).

4) Declare the product to your UPS devel opment database with the development chain so
that it doesn’t interfere with other peoples’ work. Although the product itself doesn’t
exist yet, the declaration can be done and we recommend it at this stage for
convenience.

5) Create the product script in the bi n directory (or copy it into there).

Building UPS Products 16-1

6) Create man pages (auser’s guide is recommended also).

7) Test the product.

16.1.1 Build the Directory Hierarchy

We will take the product root directory to be hel | o/ v1_0. Thisproduct root directory can
sit anywhere in the file system. An appropriate, simple directory structure underneath the
product root directory is as follows:

bi n contains the executable script hel | o
man contains the unformatted man page(s)
cat man contains the formatted man page(s)

t est contains the test script(s)

A README fileshould go directly under hel | o/ vl 0. We'll put thetablefile, called
hel | 0. t abl e, under the database. Remember that most products would have more
subdirectories and files than shown here, in particular a ups directory aswell as ht nl
and/or doc for the user’sguide.

16.1.2 Createthe TableFile

For our example, we'll create thefile hel | 0. t abl e and put it in the product subdirectory
of the development database. A simple tablefilefor this product might look like:

FI LE=TABLE
PRODUCT=hel | o
VERS| ON=v1_0

FLAVOR = ANY
QUALI FIERS = ""

ACTI ON=SETUP
pat hPrepend(PATH, ${UPS_PROD DI R}/bin, :)
set upEnv()

16.1.3 Declarethe Product to your Development UPS
Database

Refer to section 10.1 Declare an Instance for instructions on declaring the product to your
UPS database, or see the reference section 22.5 ups declare. In particular, note two things:

1) For an unflavored script like this example, declare the flavor specifically asNULL
(using either the -f NULL or-0 option).

2) Declare it with the chain devel opment for your pre-distribution testing (using the - d
option).
For example:

% ups declare -0dz /ups_dev_db -r /ups_dev_prod/hello/vl 0 -m
hello.table hello vl 0O

16-2 Building UPS Products

We recommend declaring at this stage for reasons of convenience and organization. It allows
youtorun setup [-d] ontheproduct to make the $<PRODUCT>_DIR environment
variable available.

16.1.4 Copy the Product Executable to the bin Directory

Create the script inthe bi n directory, or copy or move it to this location.

16.1.5 Provide Product man Pages

See Chapter 38: Creating and Formatting Man Pages for more complete instructions on
creating man pages.

Create the (unformatted) nroff source $HELLO DI R/ man/ hel | 0. 1. It may look similar
tothis:

. TH HELLO 1 LOCAL

. SH NAME

hello - print "Hello world" on stdout

. SH SYNOPSI S

.B hello

. SH DESCRI PTI ON

.B hello

prints the string "Hello world" on standard out put.

Use this source to create the formatted man page using the commands:
% cd $HELLO DI R/ man
%nroff -man hello.1 > ../catman/hello.1

Onceit isformatted, it will look like this:

HELLO(1) HELLQ(1)

NAME
hello - print "Hello world" on stdout

SYNOPSI S
hell o

DESCRI PTI ON
hello prints the string "Hello world" on standard out put.

1. If nroff isnot available, run set up grof f togetthe GNU version.

Building UPS Products 16-3

16.1.6 Test the Product

Now you can setup and test your product. Asan example, for our product we might run:
% setup hello v1_0

% hel | o
Hello world

% unsetup hello v1_0

% hel |l o

sh: hello: command not found
In many cases, writing agood test script can be rather challenging. Include at least abasic test
to ensure that the product works properly. For our example, the test script just needsto run our
hello program and verify its output, e.g.,:

#!'/ bi n/ sh
hello | grep "Hello world" > /dev/null

Thiswill exit with a successful exit codeif hello prints Hel | o wor | d, and fail otherwise.

16.2 Specificsfor Different Categories of
Products

This section discusses all the steps you need for turning virtually any product into a UPS
product. We start with the simpler cases and finish with the more complex ones. For al
categories of product, if your product has dependencies, either for building or for execution,
you need to have them available to you on your devel opment system when you build and test
the product.

16.2.1 Unflavored Scripts

Unflavored scripts, that is scriptswith the flavor NULL, are the simplest form of UPS product.
The example in section 16.1 shows how easy it isto create a UPS product from an unflavored
script. A product like this does not need to be rebuilt on different architectures, and generaly
does not need CONFIGURE and UNCONFIGURE actions or scripts. Some, although very
few, unflavored scripts require INSTALLASROOT actionsin the table file to copy specific
filesinto / usr/1 ocal / bi n, or to perform similar actions.

We strongly discourageuseof / usr/ | ocal / bi n or any other hard-coded path; see section
15.1.1 under 15.1 Product Devel opment Considerations and Recommendations.

16-4 Building UPS Products

16.2.2 Pre-built Binaries

Many third-party products obtained from a vendor or downloaded from the Web are binary
images without source code. When you go to avendor’s web site, you will often find separate
pre-built binaries for several UNIX operating systems/releases. Note that they may use
slightly different terminology than we do to refer to the different flavors.

Generally, to run products that consist of executables (as opposed to libraries, for example),
you just need to add the executable directories to your $PATH after downloading. To make a
product compatible with UPS, you should provide a table file that modifies the $PATH, a
README file and some documentation. If the vendor provides examples and/or any other user
files, include them. Most products distributed in this manner include documentation, either
man pages or html files, and sometimes both.

Follow this general procedure:

« Create one master product root directory. Underneath it, create the product directory
structure, including at least a bi n directory.

« Create the appropriate product subdirectories (ht M for Web documents, doc for
PostScript or other forms of documentation, man and/or cat man for unformatted
and/or formatted man pages, respectively) and copy the vendor’s documentation into
them. You can opt to leave the documentation directory structure the same as the way it
is provided.

* Creste a READMVE filein the product root directory with relevant information such as

where this product was obtained, by whom, any licensing restrictions or other notes, and
o on.

« Create atablefile. It can be modified later as needed, but at least arudimentary tablefile
must exist in its actual location before declaring the product. In most cases, within the
tablefile, the product instance’s bi n directory should be added to the $PATH within a
SETUP action, e.g.,:

ACTI ON=SETUP
pat hPrepend(PATH, ${UPS_PROD DI R}/bin, :)

* Create other ups directory scripts and data files as needed inthe ups subdirectory.
(For most pre-built binaries you shouldn’t need any.)

« Declare the product to a UPS database with the chain development (- d) and no flavor
(-f NULL).

Now it'stime to create areas for each flavor of the product that you plan to install.

* Duplicate the product root directory tree once for each flavor of binary you plantoinstall
(using tar or other appropriate tool).

« For each flavor, copy the pre-built binary into the appropriate bi n directory. This
usualy involves unwinding atar file.

« Declare the suite of product instances (one per flavor) to your UPS devel opment
database for testing before you distribute them (strongly recommended!).

* Set permissions for al readablefilesto a+r. Set permissions for all scripts and other
executablefilesto a+x.

» Test each one out!

Building UPS Products 16-5

16.2.3 Products Requiring Build (In-House and
Third-Party)

Most locally developed products, and many vendor-supplied products, are distributed as
source code which must be rebuilt for each OS flavor. We are trying to get away from
UPS-packaging vendor-supplied products, however, we provide instructions in case you need
to do so.

If you are building a product which was obtained from an outside source, you may not have
control over the product directory hierarchy. Some outside products include configuration
options (via Makefiles) to specify where the resulting libraries and/or images should reside,
but in other cases you must give a hard-coded path to the final output file. In the latter cases,
when it is absolutely necessary, you may need to use UPS as a“ bookkeeping” wrapper and
common point of distribution. Contact uas-group@fnal .gov for assistance.

If you are developing the product yourself, you should follow these guidelines:

« Store the master source code (and all the auxiliary files) in a CV'S code repository (or
other code-version management system) according to your group’s policies.

» Use asensible product directory hierarchy (src, I'i b, bin, htm, doc, ups
subdirectories). See section 15.3 for recommendations.

« If the product needsto know itslocation (or that of itsincludefiles or auxiliary files), use
thelocal read-only variable ${ UPS_PROD_DIR} or the run-time environment variable
$<PRODUCT>_DIR rather than a hard-coded path. Make sure that your table file sets
thisvariable.

Preparation for Rebuilding Any Product

For any product, you first need to create the infrastructure. Much of the work needsto be done
only once, and is reused for each flavor of the product that is built:

« Create the master source product directory hierarchy.

* Create/copy ups directory scripts, datafiles, and auxiliary files as needed inthe ups
subdirectory.

* Create at least abasic table file (include QUALIFIERS="BUILD" or “build”, and set
$<PRODUCT>_DIR under the SETUP action)

« Declare the product with the chain development and the flavor NULL+SOURCE- ONLY
toalocal UPS database. Make surethat all UPS product requirements are declared
properly.

*Run setup -d -q "?buil d?BUI LD" onthe product to set $<PRODUCT>_DIR.

* Create source code inthe sr ¢ directory, or copy it there.

« Create aMakefilein the product root directory, ${ UPS_PRCD_DI R} (or simply write
abuild script if aMakefileis overkill) to use for building the product binaries. For
reproducibility, make sure that you include all the stepsto go from raw source to the
completed product. Itisagood ideato have the Makefile or build script run atest suite
whenever possible.

» Modify the table file for SETUP and UNSETUP actions.

« Create documentation in the appropriate directories (ht M for Web documents, doc
for PostScript or other forms of documentation, nman and/or cat man for unformatted
and/or formatted man pages). Modify table file to note the locations.

If the documentation came from the vendor in other locations, you don’t need to moveit;
just indicate the locations in the tablefile.

16-6 Building UPS Products

* Keep track of any relevant informationina ${ UPS_PROD_DI R} / README file. This
information should include where the source code came from, any tweaks that were
necessary to make it build, the node names and OS versions that were used to build the
binaries, known bugs, and so on.

* Set permissionsto a+x for scripts and other executables, andto a+r for readable
files.

Stepsfor Rebuilding a Product

Once you have created the product structure along with all of the support files, you will need to
get down to the business of actually building the product images. If you're planning on
redistributing this product to awider audience than just your machine, you must be careful in
selecting abuild node. The build nodes should have appropriate levels of compilers, OS, and
other products required for building the given product.

We recommend that you create separate build areas, one for each target flavor, so that the
different flavors of binary files do not get mixed up. Once you have completed the preparation
described above, compl ete these steps:

* Duplicate this source tree once for each target platform, using the file naming
conventions that have been established for your build cluster (use tar or other
appropriate tool, or you may need to check it out from version control).

« Declare these new directory trees each with its target flavor.
Then for each of the target flavors:

« Declare the product to the database using the flavor, optionally achain of - d, and the
case-appropriate qualifier BUILD or build (e.g., - g BUI LD). If thisisa product which
creates links, make sure they were created properly and that each link points to the
correct parent product root directory!)

« Setup the product instance of that flavor in order to set $<PRODUCT>_DIR to theright
product root directory. Use boththe - d (for development chain, if declared) and - q
BUI LD (or -q buil d)options(i.e., setup -dgq BU LD <product >).

* Invoke the product’s build procedure or Makefile to rebuild the product from scratch.

If thisis a product which is building filesin a hard-coded path, check to make sure that
these files are being created properly. They should reside under the

${ UPS_PROD DI R} area, but viathe symbolic links, they should appear to also
reside under the hard-coded directory.

16.2.4 Overlaid Products

An overlaid product gets distributed and maintained in the product root directory of its main
product. For example, the overlaid products cern_bin, cern_ups, cern_lib, etc., al residein
the product root directory for the main product cern. A patch is another good example of the
use of overlaid products. The set of products overlaid on amain product is collectively
referred to as the overlay.

Building UPS Products 16-7

A specia keyword, UPD_OVERLAY, isprovided for inclusion in the table file of each
overlaid productl. _UPD_OVERLAY takes as its value the main product name in double
quotes. Its presence indicates that the product is an overlaid product maintained in the root
directory of the main product listed as the keyword's value. For example, the tablefilesfor the
products cern_bin, cern_ups, and cern_lib would contain the following keyword line:

_UPD_OVERLAY = "cern"
UPD would then use cern as the product name when determining the root directory.

In addition to including all the overlaid products as dependencies of the main product, we
recommend including the main product as adependency of each of the overlaid products. This
allows separate installation of each of the pieces. Circular dependency listsare allowed in
UPS.

16.3 Sample Auxiliary Files

16.3.1 README

Following isthe README filefor theteledata vl 0 product. It has been edited for brevity,
but shows the kinds of information that are important to include:

This is the tel edata product.

It contains the HTM. files and data files for the Fermlab online
tel ephone directory.

The files in $TELEDATA DI R/data are the data files, read by the
tel eserver product. These files are updated daily.

The files in $TELEDATA DIR'ww are the htm files, displayed by
the web server. These files are also updated daily; the A-Z htnl
files are rebuilt fromraw data, and the index.htnm, first.htnl
and last.htnml are given a new date stanp.

The HTM. files nust be visible fromthe web server’s default HTM.
ar ea. This is acconplished via links in /usr/local/products
(managed by "ups configure" and "ups declare -c") and links in
the system default HTML directory (handl ed by the web

adm nistrator). The /usr/local/products links will be created
automatical ly when the product is declared. The web

admi nistrator nust create the link in the top-level "default”
HTML directory, via sonething simlar to

$ cd /path/to/default/htm/area
$ In -s /usr/local/products/tel edatal/current/ww tel ephone

This allows the URL
http://ww-tele.fnal.gov/tel ephone/

to map to the file

1. UPSregards_ UPD_OVERLAY as a user-defined keyword, but it is defined within
UPD.

16-8 Building UPS Products

$TELEDATA_DI R ww/ i ndex. ht m
The structure of the teledata product is:

$TELEDATA DIR - parent product directory

ups - directory containing ups support files
configure, unconfigure - nmanage the /usr/local/products/tel edata |inks
current, uncurrent - nanage the /usr/local/products/tel edatal/current |inks
I NSTALL_NOTE - link to this file

data - directory containing data files
RAWDATA - raw unprocessed data file
NASTDATA - processed data file
emai | - gdbmindex file, keyed on email address

For further information, see the tel eserver product, or please
contact support person name, telephone and email.

16.3.2 INSTALL_NOTE

Thefollowingisasample | NSTALL_NOTE from the netscape v4 5 product:

Fermilab installation of Netscape

The Ferm | ab ups product inposes certain structure upon
its products. To this end, a wapper has been provided
which will assist in the downl oading and re-structuring
of netscape for use at Ferml ab.

To use this tool:
1. Upd install the install_netscape product.
2. setup install_netscape.

3. cd to $I NSTALL_NETSCAPE_DI R and execute the
netscape_install script. The optional
argunment specifies the directory in which
to install netscape. The default is to
install and declare netscape in
$I NSTALL_NETSCAPE_DI R.

16.3.3 RELEASE_NOTES

Thefollowingisasample RELEASE NOTES filefrom UPSv4 3. Noticethat for each
release of the product, the new update information gets appended to the previous
RELEASE_NOTES file contents so asto retain al the update information:;

UPS v4_3b

Fi xed bug in upsact when doing WiteConpileScript for a product already setup.
EnvSet | f Not Set now has no undo.

Better handling of envrenove/pathrenove, especially for cases where the value
paranet er uses backti cks.

Better handling of exeAccess, elimnating the use of 'hash’ in the Korn shell famly,
and printing error nessages as appropriate.

UPS v4_3a

Fi xed problemw th ups verify outputting incorrect infornmation about chains associ at ed
with versions.

Building UPS Products 16-9

UPS v4_3

There are new tenplate files in the ups area for the dbconfig file and the upsdb_|i st
file.

Many fixes were nade to the configuration script, particularly for NT.

When UPS uses dropit, it will now always use the '-e' switch, for an exact natch.

16-10 Building UPS Products

Chapter 17: Making Products Available For
Distribution

This chapter describes the processes of adding, updating, deleting and “cloning” product
instances or components® on a product distribution system. Information on creating tar files,
using Fermilab CV S repositories and announcing productsis also provided.

17.1 Product Distribution Overview

A set of UPD commands has been developed for adding, updating and deleting products on a
distribution node. They use the central Fermilab product distribution node fnkits.fnal.gov asthe
default distribution node, and declare productsinthe KI TS database. The commands can be
used to distribute products to any properly configured product server.

These UPD commands include:
upd addpr oduct adds a product instance to a product distribution database

upd cl onepr oduct creates a new product instance on a distribution node by
copying one that is already there and changing one or
more of itsidentifying elements

upd del pr oduct deletesaproduct declaration from adistribution database;
it also removes any associated tar file, table file and/or
ups directory

upd nodpr oduct modifies a product instance that already existsin a
distribution database; it allows you to replace atable file
or ups directory, or to add or change chain information
for the product

upd repproduct isequivalenttoa upd del product followed by a
upd addpr oduct ; it can be used only when the
replacement product instance has the same set of
identifiers as the one destined for removal

These commands are fully described in Chapter 23: UPD/UPP Command Reference.

Before preparing to distribute a product, you should verify that it is complete, tested, and
UPS-compliant. Itisoptional to create atar file of your product prior to running upd

addpr oduct , asdiscussed in section 17.2 Creating Product Tar Files. Keep in mind that the
UPD configuration on your target distribution node determines the locations in which products
get installed and declared on that node, and where their auxiliary files/directories get stored.
The configuration on the distribution node may bear no resemblance to that of your local

1. “Components’ are defined astablefilesand ups directories.

Making Products Available For Distribution 17-1

e

development system, or to that of an end user node. Once your product has been added to a
distribution node, you need to make the appropriate announcements regarding product
availability (see section 17.10 Product Announcement Poalicies).

17.2 Creating Product Tar Files

You can choose whether to make your own tar file before adding your product to a distribution
node or to let UPD make it for you. The advantage of making it yourself isthat you have
control over its contents.

Notethat it isnot necessary that the product instance'stablefileor ups directory beincluded
in the product root directory or, consequently, in thetar file. Some products may not have one,
the other, or both of these components. On the other hand, other products (e.g., bundled
products) may consist only of atablefile, in which case no tar fileis needed. If these
components exist and are located outside of the product root directory, their location must be
specified in one of two ways when adding the product to the distribution node:

eonthe upd addproduct command line

* in aUPS database declaration on your devel opment machine (database must be listed in
$PRODUCTYS)

When creating atar file of aproduct using the t ar command, perform the operation from the
product root directory. This allowsyou to use simplerelative path names to specify thefilesto
include in the tar file. Use an absolute pathname (preferably to atemporary directory) to
specify whereto put the tar file. Do not use absolute pathnames to specify the files to include
inthetar file.

Do not use the product root directory as the destination for the created tar file; it causesthe tar
fileto try to includeitself and to grow infinitely large.

The following stepsillustrate the conventions for packing up atar filefor a UPS product called
fred in such away that (a) the tar file contains arelative path to the product root directory, and
(b) the tar fileis put in an appropriate temporary directory:

% setup [-d] fred

% cd $FRED DI R

%tar cvf /tnp/fred IRIX+5 vl O.tar

Thiscreatesatar filecalled /t mp/ fred_| Rl X+5_v1_0.tar withall pathnamesrelative

to the current directory ($FRED_DI R).

You should not replace the trailing dot in the example above with $FRED DI R because that
would force the tar file to contain an absolute path to the $FRED_DI R as set on your system,
instead of arelative path to the $FRED_DI R on the target system where the tar file will be
unwound.

Using template_product (described in Chapter 18: Using template_product to Build and
Distribute UPS Products) alows you to customize the contents of your tar file. See section
18.8 Customizing your Tar File.

17-2 Making Products Available For Distribution

¢

17.3 Adding a Product

Usethe upd addpr oduct command toadd anew product instance to adistribution server.
If no host name is specified with the - h option, UPD uses the fnkits.fnal .gov host as the
default. The required command line arguments differ depending on what components the
product has and whether it’'s been declared to alocal UPS database and/or archived with tar.
Refer to the reference section 23.1 upd addproduct for the full command syntax and options
for these different situations.

A few notes:

* Whenusing upd addpr oduct -h <host >, usethefull hostname (i.e.,
hostname.fnal.gov rather than just hostname) to prevent problems when people
download the product to off-site user nodes.

« The - P optionisavailable to prevent UPS from searching in alocal database for the
product instance. If you useit, you must specify sufficient information on the command
line so that UPS/UPD can identify and locate all the product components.

« Chain information remains identical for the added product instance on the local and
distribution nodes under most circumstances. If - P isused, local chaininformationis
ignored, but can be set on the distribution node. You can use upd nodpr oduct
afterwards to change the chain.

* If the product is not declared to alocal database, you must include - m
<t abl eFi | eName> on the command line. You must asoinclude - M
<t abl eFi | eDi r> if thetablefileis not in the current directory.

17.3.1 Product Categories Defined for KITS

The central Fermilab Computing Division product distribution database Kl TS, located on the
server fnkits.fnal .gov, recognizes severa different categories of product:

default regular products added to the KI TS database for distribution to
any on-site or registered off-site node.

FermiTools locally-devel oped and supported software packages that we make
available to the public

proprietary products for which Fermilab has a limited number of licenses

fnalonly products accessible only tothe f nal . gov domain

usonly US-only (United States only) products are accessible only to U.S.

government (. gov) and military (. ni |) domains

Most products fall into the default category, and can be added normally. For the other
categories, you must first fill out the Special UPD Product Registration form (at
http://fnkits.fnal.gov/special prod. ht m) indicating which category of
product it is, and submit the form. Then when you receive an email message saying that your
product has been registered as a special product, go ahead and add it to fnkits. Do not use any

1. Seethe Product Distribution Platform Registration Request form at
http://ww. fnal.gov/cd/forms/upd_registration. htm.

Making Products Available For Distribution 17-3

special options (i.e,, donotuse - O "<opti ons>") with upd addpr oduct ; your
product will automatically be configured to handle the special requirements according to your
selection on the form.

17.3.2 Examples

Example 1

We have aproduct instance with atablefileand a ups directory (in addition to all the
product files) under the product root directory. Thetablefileisinthe ups directory. The
product (we'll call it foo version v1 0), was developed for the flavor SUnOS+5. The tar file
has not been made ahead of time. In order for UPD to make the tar file for us, the product
instance must be declared to alocal UPS database listed in $SPRODUCTS.

To add the product to Kl TS, the command can be entered from a SunOS+5.x machine as:
% upd addproduct foo vl 0 -2

Notice we've used the option - 2 whichisequivalentinthiscaseto -f SunQS+5. All of
the other necessary information gets picked up from the local UPS declaration.

If we choose to ignore the local declaration viathe - P option, we must supply the necessary
information in the command:

% upd addproduct foo vl 0 -2 -P -r /path/to/prod/root/dir \
-mvl O.table -M/path/to/prod/root/dir/ups \
-U /path/to/prod/root/dir/ups

Example 2

Let’'s use the same product asin Example 1, but assume that atar file already exists. The
pre-made tar file includes the entire structure under the product root directory. Thetar fileis
located on our local machinein /tnp/foo_v1l 0 SunOS+5.tar. Wewant to add it to
fnkits and declareit tothe KI TS database with the full development machine flavor
specification, no qualifiers, and no chain.

Assuming this product instance was declared to alocal UPS database before the tar file was
created, we use the command:

% upd addproduct foo vl 0 -2 -T /tnp/foo_vl 0 SunCS+5.tar

UPD can determine where to find the tablefileand ups directory on the local node by
querying the local UPS declaration. However, if the product instance had not been declared to
any local UPS database, we would need to specify the table file name and location. We would
also need to specify the ups directory if it were other than ${ UPS_PROD DI R}/ ups?,
which is the default location. A sample command that would work for this caseis:

% upd addproduct foo vl 0 -2 -T /tnp/foo_vl 0 SunOS+5.tar \
-m foo.table -M ups

1. ${UPS_PROD_DIRY} isone of aset of local UPS read-only variables listed in section
34.6 Local Read-Only Variables Available to Functions. It takes the same value as
$<PRODUCT>_DIR, the product root directory.

17-4 Making Products Available For Distribution

If the command succeeds, UPD returns a message indicating that the product was successfully
transferred and declared. After the product isadded, wecanrunthe upd list -a
command to seethe declarationin Kl TS:

%upd list -a foo v1_0

DATABASE=/ f t p/ upsdbusr
Product=foo Version=vl 0 Flavor=Sun0S+5
Qualifiers="" Chai n=""
If we had wanted to declare the product in KI TS for several flavors (assuming
flavor-independence in the product), we could have specified them in the command as follows:

% upd addproduct foo vl 0 -f |RI X+5: SunCS+5: OSF1_v3 \
-T /tnp/foo_vl O _ANY.tar -mfoo.table -M ups

Example 3

This next product, footwo v1_0, has no tablefile (thusno - m or - M needed), and it hasa
ups directory external to the product root directory. We want to declare it to the (fictional)
node dist_node.fnal.gov with the test chain (- t), the flavor NULL (- 0), and the qualifier
“debug” (-q "debug"):

% upd addproduct footwo vl 0 -t0qgq "debug" \
-h dist_node.fnal.gov -T /tnp/footwo_vl O NULL.tar \
-U /local/path/to/ups/dir

Afteritisadded, wecanrunthe upd |i st -a command to seethe declaration on the
distribution node;

%upd list -a -h dist_node footwo vl1 0O

DATABASE=/ pat h/ t o/ di st _db
Product =f ootwo Version=v1_0 Fl avor=NULL
Qual i fiers="debug" Chai n="test"

17.4 Adding an Independent Table File

You needtouse upd addproduct toadd anew tablefile product (i.e., atablefile that
isn't acomponent of a product instance). Bundled products are usually table files, for
example. To replace atable file that is a component of a product instance already declared to
the database on the distribution node, use upd nodpr oduct asdescribed in section 17.5
Replacing a Component (Table File or ups Directory).

If the independent table file is declared to alocal database, the command syntax is:

% upd addpr oduct [<flavor_option>] [<other_options>] <product>\
<versi on>

If the tablefile is not declared, the command syntax becomes:

% upd addproduct [-P] <flavor_option> -m<tabl eFi | eNane> \
[-M <tabl eFileDir>] [<other options>] <product> <version>

Making Products Available For Distribution 17-5

(

Example

The product foothree vl_0 consists only of atablefile (it may be abundled product); therefore
no tar file needsto be specified (no - T option). We want to add it and declareitto KI TS
with no chain, no qualifiers, and the flavor IRIX. We do not assume that it's been declared to a
local UPS database:

% upd addproduct foothree vl 0 -f IRIX -mfoothree.table -M\
/local/path/to/table/file

The system returns a message saying there is no product root directory. Thisis correct
behavior, and is expected.

After the tablefile product is added, we canrunthe upd |i st -a commandto seeits
declarationin KI TS:

% upd list -a foothree v1_0

DATABASE=/ f t p/ upsdbusr
Product =f oot hree Version=v1l_0 Fl avor=IRI X
Qualifiers="" Chai n=""

17.5 Replacing a Component (Table File or
ups Directory)

Use upd nodproduct toupdatethetablefileor ups directory of aproduct already
existing on the distribution node. This command cannot query the local UPS database to find
information theway upd addpr oduct can; al necessary information must be specified
on the command line. To replace atable file, the command syntax is:

%upd nmodpr oduct <fl avor_option> -m<tabl eFi | eNane> \
[-M <tabl eFileDir>] [<other_options>] <product> <version>

Note: You must include the - m option specifying the table file name, as there is no defaullt.
You must also include - M if thetablefile isnot in the current directory.

For replacing a ups directory, the syntax is:

% upd nodpr oduct <flavor_option> -U <upsDir> \

[-m <tabl eFil eName>] [-M <tabl eFileDir>] [<other_options>]\
<product > <versi on>

If the ups directory contains anewer table file that should replace the old one on the
distribution node, includethe - m and - M options in the command.

Example: TableFile

Let'sreplacethetablefilein KI TS for the product foo vl 0, from Example 1 of section 17.3.
Thenew tablefile, f 0o. t abl e, hasreplaced the old oneinthe product instance’slocal ups
directory. It doesn’'t matter if the tar file has been remade, since we're not going to send it

anyway.

% upd nodproduct foo vl_0 -2 -mfoo.table \
-M /1 ocal/path/to/ups/dir

17-6 Making Products Available For Distribution

If you issue the command from the directory specified by - M then you don’t need to include
it on the command line.

Example: ups Directory

Toreplace aproduct instance’s ups directory, usethe upd nodpr oduct command with
the - U option. Specify as much product instance information on the command line as
necessary to uniquely identify the instance in the distribution database to which this directory
isto belong. Do not make atar file of the ups directory onyour local machine. Weillustrate
with a product called foofour v1 0, flavor SunOS, no qualifiers, and use Kl TS.

It doesn’t matter whether the product instanceis declared to a UPS database listed in
$PRODUCTS, since upd nodpr oduct won't query the database anyway. Regardless of
itslocation, the ups directory location must be fully specified, for example:

% upd nodproduct foofour v1_0 -f SunCS \
-U /1l ocal/path/to/ups/dir

17.6 Adding/Changing a Chain

A product instance on a distribution node generally has at most one chain associated with it at
any time.l Whenever you changeachainwith upd nodpr oduct , you automatically delete
any and all previously assigned chains. The command syntax is:

% upd nodproduct <flavor_option> <chai n_option> \
[<ot her _options>] <product> <version>
Example 1

Product foo (of Example 1 in section 17.3) hasno chaininits Kl TS declaration. We now
wish to declare atest chain for it. Werunthe upd nmodpr oduct command with the -t
option (or -g test workstoo), asfollows:

% upd nodproduct foo vl 0 -f SunOS+5 -t
Running upd |ist -a now displays:
%upd list -a foo v1_0

DATABASE=/ f t p/ upsdbusr
Product=foo Version=vl 0 Flavor=SunGS+5
Qualifiers="" Chai n="test"

Example 2

This time we want to change an existing chain. Let’s change the test chain for foo (declared in
Example 1, above) to current. Thiswill remove the test chain.

% upd nodproduct foo vli_0 -f SunGS+5 -c
Running upd |i st now displays:

1. A product instance can have multiple chainsif they are declared together in the same
command (e.g., upd nodproduct -g test:current ...).

Making Products Available For Distribution 17-7

%upd list foo vl 0O

DATABASE=/ f t p/ upsdbusr
Product=foo Version=vl 0 Flavor=Sun0S+5
Qualifiers="" Chai n="current"

Notice that since we were looking for a current version, we didn’t need to specify -a inthe
upd |ist command.

Example 3

To remove a chain on an instance without assigning a new one or assigning the chainto a
different instance, you can use;

% upd nodproduct foo vl 0 -f SunOS+5 -g :

This often generates warnings, but it works and causes no database problems.

17.7 Deleting a Product or Component

The upd del product command letsyou delete a product declaration plus the product
itself and its associated files and directories. The product subdirectory itself does not get
deleted. You do not have the choice of leaving an undeclared product in the products area on
the distribution node. The command syntax is:

% upd del product -f <flavor_option> [<other_options>] \
<product > <versi on>

Example 1
Let's delete the product foo v1_0 (from Example 2 in section 17.6):
% upd del product foo vl 0 -cf SunCS+5

Example 2
Let's delete the product foothree v1_0 from section 17.4. It'sjust atablefile.

% upd del product foothree v1i 0 -f IR X

17.8 Cloning a Product

Use upd cl oneproduct to create anew product instance on adistribution node by
copying one that is already there and changing one or more of its identifying elements.

1. If there were a product that consisted only of a ups directory (unlikely), upd del -
pr oduct would work for that too.

17-8 Making Products Available For Distribution

The command syntax is:

% upd cl oneproduct <flavor_option> [<source_options>] \
<product > [<version>] -G "<target_options>"

where source refersto the original instance, and target to the cloned one.

To clone a product, you specify the usual UPS/UPD options to identify the product, and then
usethe - G option to specify which attributes of the clone should be different from the
original.

Why would you want to do this? For example, say that an existing product for the flavor
IRIX+5isfound to be appropriate for IRIX+6, too. In thiscase, you might want the product to
appear on the distribution server listed under both flavors. You could install the product on
your local system, redeclare it, and add it back to the distribution server, but a much quicker
and more efficient way istouse upd cl onepr oduct to clone the product instance right
on the distribution server. Hereis asample command for doing this:

% upd cl oneproduct mnyproduct vl 0 -f IRIX+5 -G "-f IRl X+6"

You can put all sortsof optionsinthe - G quoted argument list, including product and version
(with caveats); so you can evenuse upd cl onepr oduct tomake aclonewith adifferent
name, provided the product’s table file doesn’t specify the product name. For example, to
make a clone of myprod called newprod in KI TS, you'd issue acommand like this:

% upd cl oneproduct myproduct vl 0 -f IR X+5 -G "newprod"

A few caveats:

» Withinthe - G option structureonthe upd cl onepr oduct command line, only
include options such that a stanza of the source product’s table file can be matched. A
failure to match sometimes creates a database inconsistency on the distribution node. In
particular, be careful about including qualifiers,e.g., -G "-q <qual i fierList>",
if thereisno stanzafor Qualifiers = qualifierList.

« If you want product instance clones, one without qualifiers and the other with, add the
first instance without qualifiers, and cloneit to anew instance with qualifiers. Going the
other way is error-prone.

* You can only make a clone with a different product name if the source product’s table
file doesn’t specify the product name.

17.9 Including Sourcein oneof Fermilab’s
CVS Repositories

Different groups at Fermilab often depend upon each other’s software, and people need to be
ableto rebuild products on occasion. The CV S Product Repositories have been created to
provide a structure allowing access to source code with revision tracking. The product
eligibility standards are described in the document Using Fermilab CVS Product Source
Repositories, on-line at

htt p: //wwv. f nal . gov/ docs/ product s/t enpl at e_product/ Fer m Reposi t
ory/ Ferm Repository. htm .

Making Products Available For Distribution 17-9

17.10 Product Announcement Policies

The separate groups within the Computing Division have differing policies for informing the
group members and the user community about product availability. Here we present a
checklist of the kinds of things you will be expected to do when you're ready to make a
product available. We refer you to your group leader for information specific to your group.

Events which require notification actions on your part are:
« initially placing aproduct on fnkits, declared as “test” (recommended)
« declaring the product as current on fnkits
« installing the product in AFS space
« upgrading the product
» modifying or removing the product on/from fnkits
The general types of required actions are:
* Inform your group leader.
» Announce product according to group’s policy (newsgroups, product user mailing lists)

« Send email to helpdesk@fnal.gov to inform them about the new product or version.
Include information on the kinds of questions to expect, if possible, and where to direct
users for help.

« Install the product on fnalu for the general Fermilab community, if appropriate.

« Check al the chains on fnkits (and fnalu) to make sure that older versions, flavors, etc.
are no longer chained to current.

« Include source code for eligible product in a CV'S Repository.

» Make documentation available on-line under

http://ww. fnal . gov/ docs/ product s/ <product _name>. Include html
documentation.

« Fill out the on-line Computing Division Product Input Form at
htt p://cddocs. fnal . gov/ cf docs/ product sDB/ producti nput. htm
to inform the products database maintainer about your product arriving on fnkits.

17-10 Making Products Available For Distribution

Chapter 18: Usingtemplate product to Build
and Distribute UPS Products

In this chapter we describe thetemplate_product product, and show how to useit to build and
distribute a product.

18.1 Overview

To simplify and somewhat automate the process of building UPS products, we have designed
the product template_product. Once this product isinstalled on your system, it can be cloned
into a new product area and “turned into” the new product. template product can be used to
build products of all types (shell script, pre-built binary, source code).

The following is a summary of the steps involved when using template product to build a
UPS-compatible product. Each step isdescribed in detail later in this chapter:

1) Make sure template_product isinstalled on your system; install it if necessary

2) Setup tenpl at e_pr oduct

3) Create adirectory for your product

4) Clone template_product to create atemplate for your product in the new directory
5) Insert the product into the template

6) Setup and test the product

7) Distribute the product (using the Makefile provided with template _product)
Also discussed in this chapter are:

* customizing atar file

» adding a product to a CV S repository

« removing a product from adistribution node using the provided Makefile

Using template _product to Build and Distribute UPS Products 18-1

18.2 Accessing template product

The template_product product may already be installed on your system. If not, download it
from the distribution node and install it into the main products area on your system by using
the usual installation commands:

% setup upd

% upd install tenplate_ product

18.3 Cloning template product

Next you need to setup template _product, make a directory to hold your new product, and
clonetemplate_product into this new area using a script that comes with it called

Cl oneTenpl at e. You need to provide the name and version of your product to this script
(weuse newprod v1_0inthisexample). Enter this sequence of commands:

% setup tenpl ate_product
% nkdir /tnp/ newprod

% cd /tnp/ newprod

% Cl oneTenpl at e

Product nane? newprod
Product version? 1.0
Pl at form specific product [yN? y
Dependant products [list as fred:joe:harry]?
installing tenplate product files in /tnp/newprod
/ newpr od
/ t np/ newpr od/ .
/ t np/ newpr od/ . header
/ t mp/ newpr od/ . mani f est . t enpl at e_pr oduct
/ t np/ newpr od/ ups
/ t mp/ newpr od/ ups/ Ver si on
/ t mp/ newpr od/ ups/ | NSTALL_NOTE. t enpl at e
/ t mp/ newpr od/ ups/ t enpl at e_pr oduct . tabl e
/ t np/ newpr od/ ups/ . mani f est . t enpl at e_pr oduct
/ t mp/ newpr od/ Makefil e
/ t mp/ newpr od/ t est
/ t np/ newpr od/ t est/ Test Scri pt
/ t mp/ newpr od/ README. t enpl at e
42 Dbl ocks
Custom zi ng product as newprod.. .
16955
for Flavored products
?
for NULL products
for NULL products
QUALS i s added qualifiers, like: "QUALS=n ps3:debug"
#
UPS_SUBDI R=ups

18-2 Using template_product to Build and Distribute UPS Products

for Flavored products
FLAVOR=$(DEFAULT_FLAVOR)

QUALS=""
for NULL products
FLAVOR=$(DEFAULT_NULL_FLAVOR)
QUALS=""
e e e T T
Files to include in Distribution
16957

Thefileslisted in the command output have now been copied into the new product directory,
and Makefile and ups/tenpl ate_product.tabl e havebeen
customized/renamed for the product. Note that the output shows the full pathname to the
created files even though you are working from within this new product directory.

18.4 The Top-Level M akefile

The cloning of template_product creates a Makefilein the new product’sroot directory, e.g.,
/t mp/ newpr od/ Makef i | e. Inorder for this Makefile to know what it needs to about the
new product, you generally need to make a few changes to the top page or so, e.g., change the
flavor, add build instructions, and so on. Changes of this type are discussed in section 18.6.3
Add Build Instructions to Top-Level Makefile. You can also add commands to other targets.

Thefirst part of the fileis reproduced here for reference (comments not shown):

SHELL=/ bi n/ sh
Dl R=$(DEFAULT_DI R)
PROD=newpr od
PRODUCT_DI R=MYPRCD_DI R
VERS=v1_0
TABLE_FI LE_DI R=ups
TABLE_FI LE=newpr od. t abl e
CHAI N=devel opnent
UPS_SUBDI R=ups
ADDPRODUCT_HOST=f nki t s. f nal . gov
DI STRI BUTI ONFI LE=$(DEFAULT_DI STRI BFI LE)
FLAVOR=$(DEFAULT_FLAVOR)
OS=GENERI C_UNI X
QUALS=
CUST=none

all: proddir_is_set build_prefix

cl ean:
rm -f $(PREFI X)

spot | ess:

test: proddir_is_set clean FORCE
sh test/ TestScript

Using template _product to Build and Distribute UPS Products 18-3

18.5 Inserting your Product into the Template

Now you need to add your actual program into the template_product clone, and run build
instructions, if any. For shell scriptsand pre-built binaries, all you needtodoiscreatea bi n
directory under the product root, and put the executable init. For source code, you need to first
createa src directory under the product root, put the source file in it, and then build the
product as described in the next section, 18.6 Building the Product.

18.6 Building the Product

18.6.1 Add Build Instructions

We recommend that you create a Makefile (separate from the one provided) to ensure
reproducibility of the build procedure. Create or copy the Makefileinthe sr ¢ directory, and
include abuild target, e.g., i nstal | , asshown (again, weuse echo to createthefilesince
it'svery simple for this example):

% echo "install:; cp hello ../bin" > Makefile

18.6.2 Run thelnitial Build

Now createthe bi n directory under the product root, and run make to complete the build:
%nkdir ../bin

% make hell o install

cc -0 hello hello.c
cp hello ../bin

18.6.3 Add Build Instructionsto Top-L evel Makefile

Now it's time to customize the top-level Makefile created by Cl oneTenpl at e (refer to
section 18.4 The Top-Level Makefile for apartia filelisting). Typical macro definitions that
need to be changed for a compiled program are:
FLAVOR=$(DEFAULT_FLAVOR)
OS=$(DEFAULT_OS)
QUALS=
CUST=$(DEFAULT_CUST)
Next, add the build instructions under the al | target. For this example, they are the two
commands that were just run (mkdi r and make).
all: proddir_is_set build_prefix
-nkdir bin
cd src; make hello install

18-4 Using template_product to Build and Distribute UPS Products

18.6.4 Rebuild Instructions

The next time this product requires a build, you would just run the command:
% make [all]

from the product root directory.

18.7 Testing your Product

Now you can setup and test your product. Asan example, for our product we might run:
% setup newprod vl1_0 -r $cwd - M ups -m newprod.table
or, for Bourne shell,
$ setup newprod vl 0 -r ‘pwd’ -Mups -m newprod.table
followed by:
% hell o
hello world
% unsetup newprod v1_0

% hel l o

sh: hello: command not found
After testing, editthe t est/ Test Scri pt filesothat it testsyour software. In many cases,
writing a good test script can be rather challenging. Include at least a basic test to ensure that
the product works properly. For our example, the test script just needs to run our hello
program and verify its output, e.g.,:

#! / bi n/ sh

hello | grep "hello world" > /dev/null
Thiswill exit with asuccessful exit codeif hello prints hel | o wor | d, and fail otherwise.

18.8 Customizing your Tar File

Products generally get distributed as tar files. Thetemplate product top-level Makefile can
be used to make a product tar file and add it to the distribution node in one step. There are
severa variablesin the Makefile that control what template _product includesin the tar file it
makes of a product:

ADDDI RS="<dir1> <dir2> <dir3>..."

Using template _product to Build and Distribute UPS Products 18-5

lists directories whose non-CV S-bookkeeping-files should be
added. The default isfor thisto be set to “. ”, the current directory,
and the other variablesleft blank. If you only wanted to include the
bin and |i b directories of your product build area, you would
specify ADDI RS=bin |ib.

ADDFI LES= "<’ find" command opti ons>"

listsfile wildcards to include or exclude with fi nd(1) options.
E.g., to excludefilesending intilde (i.e.,, enmacs backup files),
specify ADDFI LES= ! -name ' *~'.

ADDEMPTY="<di r1> <dir2> <dir3>..."

lists empty directoriesto include in the product tar file. By default
the t ar command does not include empty directoriesin atar file.
Listing empty directories here causes them to be added.

ADDCMD=" <conmand>"

specifies a command that generates alist of files on standard
output. These fileswill then beincluded in the tar file. This could
be used, for example, to use an explicit fileinclusion list like
ADDCMD="cat my _file list".

Or it could be used to specify a find command with filtering,
sorting, and so on, e.g.,

ADDCMD= "find . ! -name "*.0 | egrep -v \
"/fool|/bar/’ | sort -u"

These values are all combined by running the following sequence of commands in the
Makefile:

(
for d in .manifest.$(PROD) $(ADDEMPTY); do echo $d; done

test -z "$(ADDDIRS)" || find $(ADDDI RS) $(PRUNECVS) ! -type d -print
test -z "$(ADDFILES)" || find . $(PRUNECVS) $(ADDFILES) ! -type d -print
test -z "$(ADDCMD)" || sh -c "$(ADDCMD)"

)
(where PRUNECVSholds fi nd optionsto prevent fi nd from goinginto CVS
directories). Thisgeneratesalong list of files that get added to the tar file.

18.9 Adding your Product to a Distribution
Node

The Makefile for template product is set up to allow distribution to fnkits by default:

» The macro ADDPRODUCT _HOST, which indicates the distribution node to which
products get added, is set to the default value f nki ts. f nal . gov.

* Under the section called Sandard Product Distribution/Declaration Targets the target
ki ts isconfigured to add a product to fnkits and declareitto the KI TS database.

To add a product to a different distribution node (e.g., distnode.fnal.gov):
« change the value of the macro ADDPRODUCT _HOST to di st node. f nal . gov

18-6 Using template_product to Build and Distribute UPS Products

 add thetarget di st node:

addpr oduct to thedistribution section
e andrunthe nake command with the new target, e.g., nake di st node

18.9.1 Add Product to fnkits

Keeping the defaults in place, simply change to the directory of your product and run naeke

Kits:

% cd /tnp/ newprod

% make kits

rm-f /tnp/build-newrod-vl_0
creating .manifest...

creating /tnp/ newprod/../newprodSunOS+5v1_0.

[t np/ newpr od/ . . / newpr odSunCS+5v1_0. tar:

STW W --
SITWTWT--
- FWXT WXT - X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
- FWXT - XTI -X
SIrWr--r--
SIrWr--r--
- FWXT - XTI -X
SITWTWT--
SITWTWT--
- FWXT WXT - X
- FWXT WXT - X

upd addproduct ~-h fnkits
-Mups -maction.table

upderr: :upderr_syslog - successful

nmengel / oss 0 Apr 1
mengel / oss 381 Apr 1
mengel / oss 5 Apr 1
nmengel / oss 55 Apr 1
mengel / oss 43 Apr 1
mengel / oss 49 Apr 1
nmengel / oss 43 Apr 1
mengel / oss 49 Apr 1
mengel / oss 15 Apr 1
nmengel / oss 15 Apr 1
mengel / oss 15 Apr 1
mengel / oss 15 Apr 1
nmengel / oss 462 Apr 1
mengel / oss 19858 Apr 1
mengel / oss 190 Mar 30
nmengel / oss 87 Feb 5
mengel / oss 36 Apr 1
mengel / oss 26 Apr 1
nmengel / oss 5380 Apr 1
mengel / oss 5380 Apr 1
-T "
-U ups

11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
17:
16:
11:
11:
11:
11:

19
18
07
07
07
07
07
07
07
07
07
07
07
14
21
32
08
09
09
09

tar...

1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998
1998

. header

. mani f est

.l ups/ Ver si on

.l ups/ | NSTALL_NOTE
. lups/ setup. csh

.l ups/ set up. sh

./ ups/ unset up. csh
. lups/ unset up. sh
.lups/ current

.l ups/ uncurrent
.lups/ configure

. lups/ unconfi gure
.lups/action.table
./ Makefile

. | READMVE
./test/TestScript
.Isrclhello.c
./src/ Makefile
.Isrc/hello
./bin/hello

/t np/ newpr od/ . ./ newpr odSunOS+5v1_0.tar"
-f SunCs+5
ups decl are newprod v1_0 \

-T ftp://fnkits/ftp/products/newrod/vl_0/SunOS+5.tar -f SunOS+5 \
-r /ftp/products/newprod/vl_0/SunCS+5 -z /ftp/upsdb -q "" \

-M/ftp/upsdb/ newprod -mv1_0.table

rm-f "/tnp/ newprod/../newprodSunOS+5v1_O.tar"

After adding your product, use upd |i st tocheck that it arrived properly:

% upd |ist

-a newprod

DATABASE=/ f t p/ upsdb

Product =newpr od Version=v1l_0

18.9.2 Specify Multiple Flavors

Qualifiers=""

Chai n=""

FlI avor =Sun0Os+5

To add different flavors of the same product without having to modify the Makefile, you may
find it convenient to specify the flavor on the make command line, e.g.,

% make " FLAVOR=SunOS+5"

Kits

Using template _product to Build and Distribute UPS Products

18-7

or, more generally,

% make " FLAVOR=${ UPS_FLAVOR}" Kits

18.10 Adding your Product Sourcetoa CVS
Repository

At thispoint, your product is eligible for inclusion in one of Fermilab’s CV Srepositories. This
allows tracking of the software revisions, and allows other people to find it, get a particular
version, and build it if they need to. The eligibility standards are described in the document
Using Fermilab CVS Product Source Repositories, at

htt p: //wwv. f nal . gov/ docs/ product s/t enpl at e_product/ Fer m Reposi t
ory/ Ferm Repository. htm .

First set up CV S appropriately for the repository you’ re going to use (the example shows
ferm | ab), then import your product:

% cvs inport newprod vl 0 fermlab

18.11 Removing your Product from a Distri-
bution Node

A special target is provided in the top-level Makefile to remove a product from Kl TS,
namely:
unki ts: del product

To remove your product fromthe Kl TS database on the fnkits node, just run the command:

% make unkits

upd del product -h fnkits -f SunOS+5 newprod v1_0
upderr: :upderr_syslog - successful ups undeclare newprod v1_0 -f SunOS+5

If your product is on a distribution node other than fnkits, the Makefile has probably already
been edited to recognize that node (see section 18.9 Adding your Product to a Distribution
Node). Add atarget analogoustothe unki ts target. For exampleif you have:

di st node: addproduct
then add the target:
undi st node: del product

To remove the product, run the command:

% make undi st node

18-8 Using template_product to Build and Distribute UPS Products

Chapter 19: Checklist for Building and
Distributing Products

In this chapter we summarize the steps for preparing to build a product, building it and
distributing it. We include information about making the appropriate announcements when a
new or upgraded product is available.

19.1 Pre-build Checklist

1) Create product root directory structure. Here isacomprehensive list of product
elements and their suggested subdirectories (most products don't require all of them):

- READMVE (top-level) and RELEASE_NOTES files (top-level or ups)
I NSTALL_NOTE file (ups)

- top-level Makefile

- executables (bi n)

- table file and other installation-independent files/scripts (ups)
- source code and build instructions (sr ¢)

- Makefile for build (sr c)

- html user documentation (ht m)

- PostScript or text user documentation (doc)

- unformatted man pages (ups/ t oman/ man)

- formatted man pages (ups/ t oman/ cat nman)

- test scripts (t est)

- examples (exanpl es)

-libraries (I i b)

-includefiles (i ncl ude)

If you use template product, the operation of cloning it creates the product root
directory, the top-level file templates and Makefile, several of the listed subdirectories,
and abasic tablefile.

2) For shell script or pre-built binary products, put the executable file(s) in the
${ UPS_PROD DI R}/ bi n directory.

For products requiring build, createthefile ${ UPS_PRCD_DI R}/ sr c/ Makefi | e.
(Include instructions for compiling, linking, testing and all other necessary operations,
aswell asfor copying thefinal binariesinto ${ UPS_PROD_DI R}/ bi n.) Insert the
product source codeinto ${ UPS_PRCD_DI R}/ src.

Checklist for Building and Distributing Products 19-1

3) Include documentation (html, man pages, user guide).

4) Create/edit READVE (and | NSTALL_NOTE and RELEASE_NOTES as needed).
See samplesin sections 16.3.1 README, 16.3.2 INSTALL_NOTE and 16.3.3
RELEASE_NOTES. template product creates template files that you need to edit.

5) Create/edit thetablefile (usualy under ${ UPS_PROD_DI R}/ ups). Seesection 35.6
Table File Examples. template product creates a basic one that you need to edit.

6) Create any extra scripts your product needsin ${ UPS_PROD DI R}/ ups. See
Chapter 36: Scripts You May Need to Provide with a Product for examples.

7) Cresate/edit the top-level Makefile (include targets for building the product, setting
permissions, testing, distributing, and so on). Section 18.4 The Top-Level Makefile lists
thefirst part of the Makefile that comes with template product, for reference.

8) (Optional) Declare the product to alocal database (usethe - d flag).

9) Store the master source code and all the auxiliary filesin a CV'S code repository (or
other code-version management system) according to your group’s policies.

For OSSgroup: CVSROOT=cvsuser @dcvs. fnal . gov:/cvs/ cd.

19.2 Build the Product

10) Verify that dependencies required for build are present.

11) Build the product using ${ UPS_PROD DI R}/ sr ¢/ Makefi | e (should get called
by top-level Makefile).

12) Set permissionsto a+x for scripts and other executables, andto a+r for readable
files (should get done by top-level Makefile).

13) If using template_product, modify the top-level Makefile to include build
instructions and other targets, as needed, and use the top-level Makefile for subsegquent
builds.

19.3 Test the Product

14) Declare the product to alocal database, if you haven't already.
15) Verify that dependencies are present.

16) Run ups veri fy ontheproduct to check the integrity of the database files (this
command is described in section 22.19 ups verify).

17) Setup and test the product (test scripts should get run by top-level Makefile).

19-2

Checklist for Building and Distributing Products

19.4 Distributeto fnkitsas“test”

18) Make sure you're registered to add products to fnkits. (Send email to compdiv@fnal
to request authorization.)

19) If product should have special access restrictions, fill out the Special UPD Product
Registration form (at http://fnkits. fnal.gov/special prod. htm).

20) (Optional) Make atar file of your product.

21) Add the product to fnkits as “test”.

If using template_product, run make ki ts from the product root directory (it sets
the chain to whatever CHAIN is set to in the Makefile). Otherwiseuse upd

addpr oduct (should becalled from your top-level Makefile). Hereisasample upd
addpr oduct command:

% upd addpr oduct \

<product > [<version>] \ # product name and version
-t \ # "test" chain

[-f <flavor>] \ # flavor

[-q <qualifierlList> \ # qualifiers

[-T <tarFile>] \ # path to tar file

[-m <t abl eFi | e>] \ # table file nane

19.5 Announcethe Product

22) Make documentation available on-line under
htt p: //wwv. f nal . gov/ docs/ product s/ <pr oduct _nane>
(/af s/ fnal.gov/fil es/docs/products/<product_ name>). Include
html documentation.

23) Fill out the on-line Computing Division Product Input Form at
http://cddocs. fnal . gov/ cfdocs/ product sDB/ pr oducti nput . ht ni
to inform the products database maintainer about your product arriving on fnkits.

24) If appropriate, install the product from fnkits onto fnalu as “test”.

25) Post newsto f nal . announce. products, fnal.announce. uni x (ifitisa
UNIX product), fnal . sys. f nal u. announce (if installed on fnalu).

26) Create <product>-users@fnal.gov mailing list (if appropriate), and send email
announcing test phase.

Checklist for Building and Distributing Products 19-3

19.6 Distributeto fnkitsas*“current”

27) Wait suitable time (amount of time depends on product).
28) Fix problems found during test phase.

29) Rebuild product.

30) Commit changesto CVS.

31) Put final release into fnkits as“ current”.

32) Reingtall as*“current” on fnalu, as appropriate.

33) Check all the chains on fnkits (and fnalu) to make sure that older versions, flavors, etc.
are no longer chained to “current”.

34) Post news to fnal.announce.products, fnal.announce.unix (if itisa UNIX product),
and fnal.sys.fnalu.announce (if installed on fnalu).

35) Send email to <product>-users@fnal .gov announcing current phase.

36) Send email to helpdesk@fnal.gov to inform them about the new product or version.
Include information on the kinds of questions to expect, if possible, and where to direct
users for help.

19-4

Checklist for Building and Distributing Products

Part VIII Developer’s Reference

Chapter 33: Actions and ACTION Keyword Values

Tablefilesand UPD configuration files often include stanzas which we call
actions. We describe actions in this chapter.

Chapter 34: Functions used in Actions

Thereisaset of supported functions that can be used in action stanzas. In
this chapter we give agenera overview of functions, list and describe all the
supported functions, provide a couple of examples of functions within
actions, and list al the read-only variables available to the supported
functions.

Chapter 35: Table Files

This chapter describes table files. Table files contain product-specific,
install ation-independent information. Most, but not al, products require a
table file. UPS product developers are responsible for providing the table
files associated with their products.

Chapter 36: Scripts You May Need to Provide with a Product

In UPS v4, the functions supported for use in table file actions will not
always suffice for completing certain tasks, for instance configuration and
tailoring. You may still need to provide executable scripts, and include
appropriate functionsin your table file to execute them. In this chapter we
discuss some scripts you may need to provide with your product.

Chapter 37: Use of Compile Scriptsin Table Files

Compile scripts can be used in table files to preprocess actions, thus
speeding up considerably the time it takes usersto execute the actions. We
describe the use of compile scriptsin this chapter.

Chapter 38: Creating and Formatting Man Pages

In this chapter we show you how to create man pages, format them, and even
create html documents from them. Thisis not a comprehensive man page
reference, but it contains sufficient information for most purposes.

Developer’'s Reference VIII-1

VIII-2 Developer’ sReference

Chapter 33: Actionsand ACTION Keyword

Values

Table files and UPD configuration files often include stanzas which we call actions. We
describe actionsin this chapter.

33.1 Overview of Actions

An action is a construction that identifies a UPS or user-defined operation viathe ACTION
keyword (defined in section 27.4 List of Supported Keywords), and lists functions to perform,
in addition to any internal processes, when the operation is executed. An action can be called
by a UPS command, a user-defined UPS-style command, or by another action. An action

stanza has the format:

ACTI ON=<VALUE>
<function_1>([<argument_1>] [, <argunent_2>] ...)
<function_2>([<argument_1>] [, <argunent_2>] ...)

Asfor all keyword values, the VALUE is not case-sensitive. Nor are the functions, although
some arguments are. The supported ACTION keyword values include:

« strings that correspond to UPS commands
* chains and “unchains” (explained in section 33.3.2 “ Unchains’ as Keyword Values)
« user-defined strings handled by the Unknown Command Handler

The supported functions are listed in section 34.3 Function Descriptions.

33.2 UPS Command Actions

33.2.1 UPS Commands as Keyword Values

Most commonly, the ACTION keyword valueis a string that corresponds to a UPS command.
The string is usually the command itself (minusthe ups at the front, if itis part of the
command), e.g., SETUP, CONFIGURE, DECLARE. The supported strings in this category
include:

CONFIGURE and UNCONFIGURE
COPY
DECLARE and UNDECLARE

Actions and ACTION Keyword Values 331

GET

MODIFY

SETUP and UNSETUP
START

STOP

TAILOR

The UPS commands that cannot have a corresponding action in atablefileare: ups
flavor and ups hel p (because no table file can be associated with them); ups
depend, ups list,and ups verify (becausethey can operate on morethan one
database); and ups exi st, ups nodify and ups touch.

33.2.2 “Uncommands’ asKeyword Values

Severa of the UPS commands have “ uncommand” counterparts, namely set up/unset up,
ups decl are/undecl are, ups confi guref/unconfi gure. Generaly, if the
“uncommand” is expected to undo everything that the origina command did, and only that,
then including an ACTION=<UNCOMMAND?> action in the table file is unnecessary.

Uncommands and Rever sible Functions

If an “unaction” is not present, UPS will look for the corresponding
ACTION=<COMMAND>, and undo all the reversible functions that were performed. In
section 34.2 Reversible Functions we discuss reversible functions. If the“uncommand” needs
to do something other than the exact reversal of the command, include an “unaction” for it (i.e.,
ACTION=<UNCOMMAND?>) and specify the functionsto execute.

This works both ways. Say the original command is “uncommand” (e.g., ups
undecl ar e), and you have included ACTION=<UNCOMMAND> but not
ACTION=<COMMAND> in the table file. Then when you run “command”, UPS will
attempt to reverse all the functions listed under ACTION=<UNCOMMAND>.

Uncommands and Script Execution

For the functions sour ceOpt Check, sour ceOpti onal , sour ceReqCheck, and
sour ceRequi r ed, the “uncommand” will execute an “unscript” inasimilar way. You do
not have to specify an “unaction” in the table file as long as the scripts to source are in the
same directory and have matching script and “unscript” filenames (i.e,, <scri pt nane>
and un<scri pt nane>). Thisaso works both ways, as discussed above.

Hereisan example. Say a CONFIGURE action specifies:

ACTI ON=CONFI GURE
sour ceOpt i onal (${ UPS_UPS_DI R}/ confi gure. ${ UPS_SHELL}, UPS_ENV)
When you runthe ups unconfi gure command, UPSfirst looksfor
ACTION=UNCONFIGURE, asusua. Failingto find it, UPS next looks for
ACTION=CONFIGURE. Upon encountering the sour ceQpti onal function, it searches
for thefile unconfi gure. ${ UPS_SHELL} inthe samedirectory (${ UPS_UPS_DI R}),
and sourcesit.

33-2 Actionsand ACTION Keyword Values

33.3 Chain Actions

33.3.1 ChainsasKeyword Values

Chain names are allowable as ACTION keyword values. Thisincludes any predefined chain
name (as listed in section 1.3.5 Chains; CURRENT, TEST, DEVELOPMENT, OLD, NEW) or
any user-defined chain name (e.g.,, MY _CHAIN). Chain actions are executed when a chain of
the corresponding name is declared to a product instance viathe ups decl ar e command.
For example, if you declare an instance as current, ups decl are -c¢ looksfor
ACTION=CURRENT.

Sometimes a UPS command executes more than one action. For example, the ups
decl are -c¢ command executes both the CURRENT and DECLARE actions, if they are
present.

33.3.2 “Unchains’ as Keyword Values

Similarly, when a chain is removed from an instance (which can happen with either ups
decl are or ups undecl ar e), UPSlooksfor the corresponding chain name preceded by
the “UN" prefix (e.g., UNCURRENT, UNTEST, UNMY _CHAIN).

The relationship between a chain action and its corresponding “unchain” action (e.g.,
CURRENT and UNCURRENT) is the same as between commands and “uncommands’, as
described in section 33.2.2 * Uncommands’ as Keyword Values. For example, if an “unchain”
action is sought but not found, UPS will then look for the corresponding ACTION=<CHAIN>
and undo all the reversible functions listed there.

33.4 The“Unknown Command” Handler

The unknown command handler effectively allows you to define a UPS-like “ unknown”
command for use with aproduct. To defineone, includein the product’stablefilean ACTION
with aunique value of your choosing, e.g., ACTION=XY Z. The corresponding command will
be ups xyz. The action should contain one or more supported functions (listed in section
34.3 Function Descriptions), as usual. Hereis an example of what the action may look like:
ACTI ON=XYZ

envSet (VARI ABLE, val ue)

sour ceRequi red(SCRI PT. csh, UPS_ENV_FLAG
Thecommand ups xyz isnow availablefor youto use. Enough information must of
course be provided on the command line to locate the table file containing the action, e.g.,:

% ups xyz [<options>] <product> [<version>]
When it is executed, the unknown command handler locates ACTION=XYZ in the tablefile
and executes the functions listed under it.

User-defined ACTION keyword values (e.g., XY Z) do not need to start with underscore (), as
contrasted with user-defined keywords (see section 27.2 Keywords: Information Storage
Format).

Actions and ACTION Keyword Values 33-3

Example

An example of the use of the unknown command handler can be found in the table file for the
product xemacsv20 4.

ACTI ON=CONFI GURE

Execute(echo "Do a 'ups bl essmail xenmacs' as root to make mail work.", NO_UPS_ENV)
ACTI ON=BLESSMAI L

Execute(chgrp mail ${UPS_PROD_DIR}/Iib/*/*/ movemail, NO_UPS_ENV)

Execut e(chrmod 2755 ${UPS_PROD_DI R}/ 1 i b/*/*/ movemai |, NO_UPS_ENV)
When the product instanceis configured (viathefirst ups decl ar e, or manually viathe
ups confi gure command), an echo command printsto screen an instruction to run the
user-defined (“unknown”) command ups bl essmai | . Thiscommand is handled by the
unknown command handler. It finds ACTION=BLESSMAIL and executes the functions
associated with it.

33.5 Actions Called by Other Actions

As mentioned in section 33.1 Overview of Actions, one action can execute another in the same
file. The called action must be assigned a unique value of your choosing, e.g.,
ACTION=XY Z, and the calling action (or actions) must include one of the following functions
(shown for ACTION=XY 2Z):

exeActi onRequi red("xyz")
or
exeActi onOptional ("xyz")

These functions are described in sections 34.3.11 exeActionRequired and 34.3.10
exeActionOptional, respectively.

This technique is useful in cases where two different UPS operations require overlapping
functionality. For example, you may want one or more identical functions to be performed
when a product gets configured and when it gets declared as current. The following example
shows how to arrange this:

action = configure
<functions for configure>
exeAct i onRequi red("common")
action = current
<functions for current>
exeAct i onRequi red("common")
action = common
<functions common to both configure and current>

334 Actionsand ACTION Keyword Values

Chapter 34. Functionsused in Actions

Thereisaset of supported functions that can be used in action stanzas. Actions are described
in Chapter 33: Actions and ACTION Keyword Values. In the present chapter we give ageneral
overview of functions, list and describe al the supported functions, provide a couple of
examples of functions within actions, and list all the read-only variables available to the
supported functions.

34.1 Overview of Functions

Tablefiles and UPD configuration files often include actions. An action correspondsto a
command, usually a UPS command, and lists functions to perform in addition to the
command’s internal processes, when the command is executed. The supported functions are
listed and described in this chapter. A function has the format:

<function_name>([<argunent_1>] [, <argument_2>] ... [<delimiter>])

The default delimiter isthe colon (;).

For example, the function;

envPrepend(<VARI ABLE>, <val ue>)

prepends the specified value to an existing environment variable, using the default delimiter.

Functions are not case-sensitive; e.g., envPrepend, envpr epend, and ENVPREPEND
are al acceptable and equivalent. A function is specified in a shell-independent manner, but
contains enough information to allow it to be transformed into a sh or csh family command
(eg., sourceRequired(),or execute()),ortobeinterpreted directly by UPS (e.g.,
writeConpileScript()).

34.2 Reversible Functions

In section 33.2.2 “ Uncommands’ as Keyword Values we discussed commands that have
corresponding “uncommands’. Usually, when the “uncommand” is run, the desired behavior
isto reverse al the functions that were performed when the original command was run. Many
of the supported functions are reversible, some are not.

Functions used in Actions 34-1

Wherever you plan to default the “uncommand” action (i.e., to specifically not include an
ACTION=UNCOMMAND stanza) and you want UPS to exactly reversethe
ACTION=COMMAND functions, make sure that you only include reversible functions under
ACTION=COMMAND. Reversible functions are identified as such in the descriptionsin
section 34.3 Function Descriptions.

34.3 Function Descriptions

34.3.1 addAlias

Description

Add an dlias (C shell family) or function (Bourne shell family). A % inthe <VALUE>
marks where the argument list should go. Reversible (runs unAl i as).

Syntax

addAl i as(<NAME>, <VALUE>)

Example 1

addAl i as(askfor, ‘echo May | have some %, please\?’)
Definesthe alias askf or, which when run with an argument like cake, e.g.,:
% askf or cake

produces the response:

May | have sone cake, please?

Example 2

addAl i as(setup, ' ${UPS_SOURCE} " ${UPS_PRCD DI R}/ bin/ups setup % ')

${ UPS_SOURCE} issetto“.” or“sour ce” depending on the shell, and %s ispresumed
to stand for aproduct name. This definesthealias set up. When issued with a product
name, e.g.,

% setup upd

it sourcesthe executable ${ UPS_PRCD DI R}/ bi n/ ups withthearguments set up and
upd.

34-2 Functionsused in Actions

34.3.2 doDefaults

Description

Perform the default functions for the command corresponding to the specified action (only
SETUP and UNSETUP have default functions). If no action listed (e.g., doDef aul t s()),
then the action under which this function occursisused. Reversible (runs doDef aul t s).

Note: If an ACTION corresponding to the given command isincluded in the file, the
command’s default functions will be executed only if doDef aul t s isspecified underneath
it. If thereisno ACTION for the command, and henceno doDef aul t s function listed, the
default functions will be executed when the command is issued.

Syntax

doDef aul t s([<ACTI ON>])

Example
doDef aul t s([SETUP])

Specifies that the default functions for the set up command will be run when the command
isissued. Moretypically, thisis specified in the following manner:

ACTI ON=SETUP
doDef aul t s()

34.3.3 envAppend

Description

Append <val ue> to existing environment variable. Reversible (runs envRenove).

It is better to append than prepend if you just want to provide avalue in case oneis not there.
If you want to override any existing value, you should prepend.

Note: Usethefunction pat hAppend for $PATH.

Syntax

envAppend(<VARI ABLE>, <value> [, <delimter>])

Example
envAppend(PYTHONPATH, ${UPS PROD DI R}/ 1i b)

Appendsthe valueof ${UPS PRCOD DI R}/ 1 i b tothevariable PYTHONPATH, using the
default delimiter.

Functions used in Actions 34-3

34.3.4 envPrepend

Description

Prepend <val ue> to existing environment variable. Reversible (runs envRenove).

Itis better to prepend than append if you want to override any existing value. If you just want
to provide avaluein case oneis not there, you should append.

Note: Usethefunction pat hPrepend for $PATH.

Syntax

envPrepend(<VARI ABLE>, <value> [, <delimter>])

Example
envPr epend(PYTHONPATH, ${UPS PROD DI R}/ Ii b)

Prependsthe value of ${ UPS_PRCD DI R}/ | i b tothevariable PYTHONPATH, using the
default delimiter.

34.3.5 envRemove

Description

Removethe string <val ue> from existing environment variable.
Note: Usethefunction pat hRemove for $PATH.

Syntax

envRenmove(<VARI ABLE>, <value> [, <delimter>])

Example
envRenmove(PYTHONPATH, ${UPS PROD DI R}/ 1i b)

Removes the value of ${ UPS_PROD DI R}/ 1 i b from thevariable PYTHONPATH;
assumes the default delimiter.

34-4 Functionsused in Actions

34.3.6 envSet

Description

Set anew environment variable. Thisis particularly useful for representing long strings.
Reversible (runs envUnset).

Note: Usethefunction pat hSet for $PATH.

Syntax

envSet (<VARI ABLE>, <val ue>)

Example
envSet (UPD_USERCODE_DI R, ${ UPS_THI S_DB})

Sets 5{ UPD_USERCODE_DIR} (thelocal database used by UPD) to ${ UPS_THIS_DB} (the
database in which the product is declared).

34.3.7 envSetlfNotSet

Description

Set anew environment variable, if not already set. Thisis particularly useful for representing
long strings.

Syntax

envSet | f Not Set (<VARI ABLE>, <val ue>)

Example
envSet | f Not Set (HOST, ‘1 ong_host nane')
If not already set, this setsthe variable HOST to along hostname.

34.3.8 envUnset

Description

Unset existing environment variable.

Syntax

envUnset (<VARI ABLE>)

Example
envUnset (MYVAR)
Unsets the variable SMY VAR.

Functions used in Actions 34-5

34.3.9 exeAccess

Description

Check for access to specified existing executable through the $PATH. If executable is found
continue. If not found, exit with error.

Syntax

exeAccess(<execut abl e>)

Example
exeAccess(gcc)

Ensures that a version of the product gcc isin your $PATH.

34.3.10 exeActionOptional

Description

Process the functions associated with the specified action for the same product instance. Do
not fail if the action doesn’t exist. Reversible.

Syntax

exeActionOpti onal ("<newacti on>")

Example
exeActi onOpti onal (" CONFI GURE")

Process the functionsin CONFIGURE action. |If no CONFIGURE action, processing
continues.

34.3.11 exeActionRequired

Description

Process the functions associated with the specified action for the same product instance. Fail if
it doesn’t exist. Reversible.

Syntax

exeAct i onRequi red(" <newact i on>")

Example
exeAct i onRequi r ed(" CONFI GURE")

Process the functionsin CONFIGURE action. If no CONFIGURE action, processing fails.

34-6 Functionsused in Actions

34.3.12 execute

Description

Execute a shell-independent command and (optionally) assign the output to an environment
variable, <VARI ABLE>.

Thefunctions execut e, sour ceRequi red, sour ceReqCheck,

sour ceOpti onal ,and sour ceOpt Check eachtake arequired parameter
(UPS_ENV_FLAG) which indicates whether to define UPS local variables. This parameter
can take the following values:

UPS ENV define al local UPS environment variables before sourcing (the
script or command relies on these being defined)

NO_UPS_ENV do not define the local UPS environment variables (the script or
command doesn’t use them)

If the optional third argument, <VARI ABLE>, isnot specified, then the specified command is
executed but the output from that command is not saved. This command does not have to be
shell-independent.

Syntax

execut e("<command>", <UPS ENV_FLAG>, [, <VARI ABLE>])

Example

execute("echo Call final installation script for
${ UPS_PRCD_NAME} ${UPS_PROD VERSI ON} ", NO_UPS_ENV)

(All on oneline.) UPS echoes the given text and sourcesthe cur rent script for the
product.

34.3.13 fileTest

Description

Runashell teston <fil e>,fail if <test> isnottrue(see man test).

Syntax

fileTest(<file> <test> [, <errornessage>])

Example
fileTest(/, -w, "You rmust be root to run this conmand.")

This tests for write access in the root directory and returns the shown error message if the test
fals.

Functions used in Actions 34-7

34.3.14 pathAppend

Description

Append <val ue> to existing $PATH-like environment variable. Reversible (runs
pat hRenove).

Itis better to append than prepend if you just want to provide avalue in case oneis not there.
If you want to override any existing value, you should prepend.

Syntax

pat hAppend(<VARI ABLE>, <value> [, <delimter>])

Example
pat hAppend(PATH, ${UPS_PROD DI R}/ bi n)

Appends the value ${ UPS_PROD DI R}/ bi n to the $PATH variable using the default
delimiter.

34.3.15 pathPrepend

Description

Prepend <val ue> to existing $PATH-like environment variable. Reversible (runs
pat hRenmove).

It is better to prepend than append if you want to override any existing value. If you just want
to provide avaluein case oneis not there, you should append.

Syntax

pat hPrepend(<VARI ABLE>, <value> [, <delimter>])

Example
pat hPrepend(PATH, ${UPS_PROD DI R}/ bi n)

Prependsthevalue ${ UPS_PROD DI R}/ bi n tothe $PATH variable using the default
delimiter.

34-8 Functionsused in Actions

34.3.16 pathRemove

Description

Removethe string <val ue> from existing $PATH-like environment variable. Reversible
(runs pat hAppend).

Syntax

pat hRenove(<VARI ABLE>, <value> [, <delimter>])

Example
pat hRenove(PATH, ${UPS_PROD DI R}/ bi n)
Removes the value ${ UPS_PROD DI R}/ bi n from the $PATH variable.

34.3.17 pathSet

Description
Set a $PATH-like environment variable (in csh family, setting a$PATH is different than setting
other environment variables). No choice of delimiter offered. Reversible (runs envUnset).

If this gets set wrong, your $PATH could get deleted. (To recover from this problem, should it
occur, simply run setup set pat h.)

Syntax
pat hSet (<VARI ABLE>, <val ue>)
Example
pat hSet (PATH, /afs/fnal.gov/ups/<prodl/vl 0/ SunGCs+5/bin: ...)

Sets the $PATH to the value given (sample value truncated after first delimiter for brevity).

34.3.18 prodDir

Description

Set the $<PRODUCT>_DIR environment variable to the root directory of the product
instance. Reversible (runs unPr odDi r).

Syntax

prodDir ()

Functions used in Actions 34-9

34.3.19 setupEnv

Description

Set the $SETUP_<PRODUCT> environment variable so that product can later be unsetup.
Reversible (runs unset upEnv).

Syntax

set upEnv()

34.3.20 setupOptional

Description

Setup another UPS product as a dependency, do not fail if the product doesn’t exist.
Reversible (runs unset upOpti onal).

Syntax

The syntax is similar to the command set up:

setupOptional ("[<options>] <product> [<version>]")

Example
setupOpti onal ("perl™)

Setup the default instance of the product perl, if available. Do not fail if not found.

34.3.21 setupRequired

Description

Setup another UPS product as a dependency; fail if product not found. Reversible (runs
unset upRequi r ed).

Syntax

The syntax is similar to the command set up:

set upRequi red("[<opti ons>] <product> [<version>]")

Example
setupRequired("-j Info")

Setup the default instance of the product I nfo and no dependencies; fail if not available.

34-10 Functionsused in Actions

34.3.22 sourceCompileOpt

Description

If <fil eNane> exists, then sourceit and skip remaining functions; otherwise just complete
the remaining functions. Thisistypically used in conjunction with
wr it eConpi | eScri pt ; see section 34.3.33 writeCompileScript.

Syntax

sour ceConpi | eOpt ("<fil eNanme>")

Example
sour ceConpi | eOpt ("/ my/ conpi | e/ script")

This sources the specified script which was created with wri t eConpi | eScri pt . If script
doesn’t exist, process continues.

34.3.23 sourceCompileReq

Description

Source <fil eName> and skip all remaining functions; fail if file not found. Thisis
typically used in conjunction with wr i t eConpi | eScr i pt ; see section 34.3.33
writeCompileScript.

Syntax

sour ceConpi | eReq(" <fil eNane>")

Example
sour ceConpi | eReq("/ my/ conpi | e/ script")

This sources the specified script which was created with wri t eConpi | eScri pt . If script
doesn't exist, processfails.

Functions used in Actions 34-11

34.3.24 sourceOptCheck

Description

Check if specified script exists and if so, source it and check return status for error. If error,
abort script and return. Reversible (runs sour ceQpt Check onthe“un” script, e.g.,
current and uncurrent).

Thefunctions execut e, sour ceOpt Check, sourceOpti onal ,

sour ceReqCheck, and sour ceRequi r ed eachtake arequired parameter
(UPS_ENV_FLAG) which indicates whether to define UPS local variables. This parameter
can take the following values:

UPS ENV define al local UPS environment variables before sourcing (the
script or command relies on these being defined)

NO_UPS_ENV do not define the local UPS environment variables (the script or
command doesn’t use them)

Thefunctions sour ceOpt Check, sour ceQpti onal, sour ceReqCheck, and
sour ceRequi red each take an optional parameter (EXI T_FLAG). This parameter can
take the following values:

CONTINUE after sourcing the script, continue with the next function (the
default)
EXIT after sourcing the script, skip the rest of the functions
Syntax
sour ceOpt Check(<SCRI PT>. ${ UPS_SHELL}, UPS_ENV_FLAG [,
EXI T_FLAQ)
Example

sour ceOpt Check(${ UPS _UPS DI R}/ current.${UPS SHELL}, UPS_ENV)

Check if ${UPS_UPS DI R}/ current exists. If so, first defineall local UPS
environment variables, then source the script and check return status for error. If error, abort
script and return.

34-12 Functionsused in Actions

34.3.25 sourceOptional

Description

Check if <SCRI PT> existsand if so, sourceit. If script not found, continue. Reversible
(runs sour ceOpti onal onthe“un” script, e.g., current and uncurrent).

See section 34.3.24 sourceOptCheck for information about the parameters UPS_ENV_FLAG
and EXI T_FLAG

Syntax
sour ceOpti onal (<SCRI PT>. ${ UPS SHELL}, UPS ENV_FLAG [,
EXI T_FLAG)
Example
sour ceOptional (${ UPS UPS DI R}/ current. ${UPS SHELL}, UPS_ENV)

Check if ${UPS_UPS DI R}/ current exists. If so, first define all local UPS
environment variables, then source the script. If not, continue.

34.3.26 sourceRegCheck

Description

Source <SCRI PT> and check return status for error; fail if script not found. If error, abort
script and return. Reversible (runs sour ceOpt Check onthe“un” script, eg., current
and uncurrent).

See section 34.3.24 sourceOptCheck for information about the parameters UPS_ENV_FLAG
and EXI T_FLAG.

Syntax

sour ceReqCheck(<SCRI PT>. ${ UPS_SHELL}, UPS_ENV_FLAG [,
EXI T_FLAG)

Example
sour ceReqCheck(${ UPS UPS DI R}/ current.${UPS SHELL}, UPS_ENV)

Check if ${UPS _UPS DI R}/ current exists. If not, it will fail. If script exists, first
define al local UPS environment variables, then source the script and check return status for
error. If error, abort script and return.

Functions used in Actions 34-13

34.3.27 sourceRequired

Description

Source <SCRI PT>; fail if script not found. Return status not checked. Reversible (runs
sourceOpti onal onthe“un” script, eg., current and uncurrent).

See section 34.3.24 sourceOptCheck for information about the parameters UPS_ENV_FLAG
and EXI T_FLAG

Syntax

sour ceRequi red(<SCRI PT>. ${ UPS_SHELL}, UPS ENV_FLAG [,
EXI T_FLAG)

Example
sour ceRequi red(${ UPS _UPS DI R}/ current.${UPS SHELL}, UPS_ENV)

Check if ${UPS_UPS DI R}/ current exists. If not, it will fail. If script exists, first
define al local UPS environment variables, then source the script.

34.3.28 unAlias

Description

Remove alias/function of specified name.

Syntax

unAl i as(<NAME>)

34.3.29 unProdDir

Description

Unsets the $<PRODUCT>_DIR environment variable. Reversible (runs pr odDi r).

Syntax

unProdbir ()

34-14 Functionsused in Actions

34.3.30 unsetupEnv

Description

Unsets the $SETUP_<PRODUCT> environment variable. Reversible (runs set upEnv).

Syntax

unset upEnv()

34.3.31 unsetupOptional

Description

Runs unset up on aproduct, does not fail if the product doesn’t exist or if it's already
unsetup. Reversible (runs set upOpti onal).

Syntax

The syntax is similar to the command unset up:
unset upOpti onal ("[<options>] <product> [<version>]")

For previously setup products, the only options that are recognizedinclude - e, -j,and -v.

Example
unset upOpti onal ("perl™)

Unsets the default instance of the product perl, if already setup. Does not fail if product
doesn’t exist or has aready been unsetup.

Functions used in Actions 34-15

34.3.32 unsetupRequired

Description
Runs unset up onaproduct; failsif product not found. Reversible (runs
set upRequi r ed).

Syntax
The syntax is similar to the command unset up:
unset upRequi red(" <opti ons>] <product> [<version>]")

For previously setup products, the only options that are recognized include - e, -j,and -v.

Example
unset upRequi red("perl ™)

Unsets the default instance of the product perl, if already setup. Failsif product doesn't exist
or has already been unsetup.

34.3.33 writeCompileScript

Description
Write afile of compiled functions for the given ACTION keyword value. It actually writes
four filesintotal: <script>.[c]sh and un<script>.[c]sh.

Thefunction wri t eConpi | eScri pt takesan optional parameter which can be one of the
following:

OLD if fileName exists, movetheoldoneto fil eNane. ol d before creating the
new one.

DATE if fil eNane exists, movetheoldoneto fil eName. {dat est anp} before
creating the new one.

Syntax
wri t eConpi | eScri pt ("<fil eNane>", "<ACTION>" [, OLD| DATE])

Example
writeConpileScript("/my/conpilelscript", "SETUP', OLD)

This executes the SETUP action and writes the output of the functions to the specified script,
first saving the pre-existing script to / nmy/ conpi | e/ scri pt. ol d. Thisfunction knows
toignore the function sour ceConpi | eReq or sour ceConpi | eOpt if it encounters
either at the top of the list of SETUP functions. See sections 34.3.22 sourceCompileOpt and

34.3.23 sourceCompileReq.

34-16 Functionsused in Actions

34.4 Functionsunder Consideration for
Future Implementation

copyCat Man

copyHt nl

copyl nfo

copyMan

copyNews

else ()

el seif (<condition>)
endi f ()

i f (<condition>)
uncopyCat Man

uncopyMan

Will copy catman files from source directory specified in
tablefile by CATMAN_SOURCE_DIR to target directory
specified in the UPS database configuration file by
CATMAN_TARGET_DIR. Reversible (will run
uncopyCat Man)

Will copy html files from source directory specified in
table fileby HTML_SOURCE_DIR to target directory
specified in the UPS database configuration file by
HTML_TARGET DIR.

Will copy Info files from source directory specified in
table file by INFO_SOURCE_DIR to target directory
specified in the UPS database configuration file by
INFO_TARGET_DIR.

Will copy man files from source directory specified in
table file by MAN_SOURCE_DIR to target directory
specified in the UPS database configuration file by
MAN_TARGET_DIR. Reversible (will run
uncopyMan)

Will copy news files from source directory specified in
table file by NEWS_SOURCE_DIR to target directory
specified in the UPS database configuration file by
NEWS TARGET DIR.

Will begin an alternative branch
Will proceed to another condition
Will end a conditional branch
Will begin a conditional branch

Will remove catman filesfrom target directory specified in
the UPS database configuration file by
CATMAN_TARGET_DIR. Reversible (will run
copyCat Man)

Will remove man files from target directory specified in
the UPS database configuration file by
MAN_TARGET_DIR. Reversible (will run copyMan)

Functions used in Actions 34-17

34.5 Examplesof Functionswithin Actions

34.5.1 A setup Action

Thisfirst example showsa set up action:

ACTI ON=SETUP

prodDir ()

set upEnv()

pat hAppend(PATH, ${UPS_PRCD_DI R}/ bi n)

set upRequi red("crow")

set upOpti onal ("gypsy")
When the product instance gets setup, UPS does five thingsin additionto set up’sinternal
processes:

* sets the variable $<PRODUCT>_DIR to the product root directory
* sets the variable $SETUP_<PRODUCT> to identify the product instance for unsetup
« appends the product’s bi n directory to the path

« sets up the product crow (and abortsthe setup if a suitable current instance of crow isnot
available)

« sets up the product gypsy, if found (set up proceeds whether or not a suitable current
instance of gypsy is available).

345.2 A “declareascurrent” Action

A second example illustrates steps for UPS to complete when the product instance is declared
as current to the database:

ACTI ON=CURRENT
execute("echo Call final install script for ${UPS_PROD NAME} ${UPS_PROD VERSI ON} ")
sour ceRequi red(${ UPS_UPS_DI R}/ current, UPS_ENV)

UPS echoes the given text and sourcesthe cur rent script for the product.

34.6 Local Read-Only Variables Availableto
Functions

The read-only variables listed below are set by UPS and available for use with the functions
described in section 34.3 Function Descriptions. In several functions, the flag
UPS_ENV_FLAG controls whether these variables get set (see section 34.3.24
sourceOptCheck).

These UPS variables do not get exported to the environment, but exist only for the duration of,
and in the context of, the processing of an action (actions are described in Chapter 33: Actions
and ACTION Keyword Values). By contrast, the environment variables $<PRODUCT>_DIR
and $SETUP_<PRODUCT> (described in section 22.1 setup under Environment Variables Set
by Deflault During setup), if defined, remain set and available for use aslong as the product is
setup.

34-18 Functionsused in Actions

34.6.1 List of Current Read-Only Variables

When you use these variables, always enclose them in curly brackets ({}) as shown in the list.

Loca Read-Only Variable

Description of Value

${ PRODUCTS}

Generally has the same value as the environment variable
$PRODUCTS. Thedifferenceisthat (read-only) ${ PROD-
UCTS} keepsthe value set at the time UPS was invoked,
whereas (environment) SPRODUCTS may be reset.

You can reset $PRODUCTS (i.e., using the function
envSet (PRODUCTS, "<val ue>" inthetablefile)in
order to use anew value in the temp file; $PRODUCTS
won't get overwritten by ${ PRODUCTS} as the temp file
executes. See the example that follows this table.

Note that thisisnot valid for the other read-only variablesin
thistable; if you try to reset them (as environment vari-
ables), your values will get overwritten by the read-only
values as the temp file executes.

${UPS_COMPILE}

L ocation and file name of afile containing compiled func-
tions (see Chapter 37: Use of Compile Scriptsin Table
Files). It hasthe value of the combined keywords:
COMPILE_FILE_DIR/COMPILE_FILE

${UPS_EXTENDED}

Thissetto 1if the - e (extended) option was specifiedin
the set up command (see section 24.2.1 -€)

${UPS OPTIONS}

Option string that was passed with the - O (upper case 0)
flag (see Chapter 24: Generic Command Option Descrip-
tions)

${UPS ORIGIN}

This specifies the location of the master sourcefiles.

${UPS_OS_FLAVOR}

Operating system flavor as obtained from ups fl avor

${UPS_PROD DIR}

Product instance root directory; same value as the environ-
ment variable $<PRODUCT> DIR

${UPS_PROD_FLAVOR}

Product flavor chosen during instance matching

${UPS_PROD_NAME}

Product name as declared in the UPS database

${UPS_PROD_QUALIFIERS}

Product qualifiers chosen during instance matching.

These are the qualifiers declared with the sel ected instance.
They are not necessarily the same set of qualifiers specified
on thecommand lineviathe - g option (the UPS matching
algorithm chooses the “best fit” based on the specified qual-
ifiers; not necessarily an exact match).

${UPS_PROD_VERSION}

Product version as declared in the UPS database

${UPS THIS DB}

Database in which this product instance is declared.

1. The set up command and these variables are described in section 22.1 setup.

Functions used in Actions

34-19

Loca Read-Only Variable

Description of Value

${UPS_UPS DIR}

Path to the product instance’'s ups directory

${UPS VERBOSE}

Thisissetto1if the - v (verbose) option was specified
(see Chapter 24: Generic Command Option Descriptions).

$PRODUCTSvs. ${PRODUCTS}: Resetting $PRODUCTS

This example isintended to illustrate the interaction between the read-only variable
${PRODUCTS} and the environment variable $PRODUCTS. There are a couple of

potentially confusing points.

Let ${PRODUCTS} besetto / f nal / ups/ db. Say inyour tablefile you set $SPRODUCTS
to / pat h/ t o/ nydb inthe SETUP action, like this;

ACTI ON=SETUP

envSet (PRODUCTS, "/path/to/ nmydb: ${ PRODUCTS}")

Now ${ PRODUCTS} and $PRODUCTS are different. The following execut e functions
show the differencein the values. The function:

execut e("echo $PRODUCTS', NO_UPS_ENV)

would produce:

/ pat h/to/ mydb: / f nal / ups/ db

whereas the same function using ${ PRODUCTS}, e.g.,
execut e("echo ${PRODUCTS}", NO_UPS_ENV)

would produce only:

/fnal /ups/db

$PRODUCTSvs. {PRODUCTS}: Effectson setup and upsdepend

Another issueisthe setup. . .

functions. Say you have a product fred v1_0 declared in

/ pat h/t o/ nydb (the database not included in ${ PRODUCTS}). If you include a
set upRequi red or setupOptional function later inthe SETUP action, e.g.,:

ACTI ON=SETUP

envSet (PRODUCTS, "/ pat h/t o/ mydb: ${ PRODUCTS}")

set upRequired(fred vi1_0)
the setup will fail because these functions only reference the read-only variable
${PRODUCTS}, which in this case doesn’t include your product. You can get around this by
using the execut e function to set the product up:

execute ("setup fred vli_0", NO_UPS_ENV)
This function uses the environment variable $PRODUCTS.
Remember though, when youruna ups depend on aproduct, only productsidentified in

set upRequi red or setupOptional functionsget listed. You would not seefred
vl Olistedinthe ups depend output for the main product in our example.

34-20

Functionsused in Actions

34.6.2 Read-Only Variablesunder Consideration for the
Future

We plan to make the keyword values, listed in section 27.4 List of Supported Keywords,
available as read-only variables available to functions. The read-only variable corresponding
to akeyword will typically include “UPS " prepended to it. E.g., the read-only variable
corresponding to the keyword DECLARED will be ${UPS DECLARED}. Severa of these
are aready implemented in thisway, e.g., { UPS PROD_DIR} corresponds to the keyword
PROD_DIR.

Functions used in Actions 34-21

34-22 Functionsused in Actions

Chapter 35. TableFiles

This chapter describes table files. Table files contain product-specific,
install ation-independent information. Most, but not al, products require atable file. UPS
product developers are responsible for providing the table files associated with their products.

35.1 About TableFiles

Tablefiles are created and maintained by product developers. Table files contain the
non-system-specific and non-shell-specific information that UPS uses for installing,
initializing, and otherwise operating on product instances. For a given product, usually a
single tablefile suffices for several instances, especially of asingle version. Sometimes each
instance has a separate table file. Table file names are arbitrary; we present recommendations
in section 35.3 Recommendations for Creating Table Files.

Typically, when a UPS command is issued, UPS finds the table location from the command
line or the version file (see section 28.4 Determination of ups Directory and Table File
Locations). The command completesitsinterna processes, and then within the tablefile, it
proceeds to:

1) locate the stanza that matches the specified product instance

2) find an ACTION keyword value that corresponds to the command, if any (see Chapter
33: Actions and ACTION Keyword Values)

3) execute the functions listed underneath the corresponding ACTION keyword, if any
(see Chapter 34: Functions used in Actions), or

4) reverse the functions listed underneath the ACTION corresponding to the
“uncommand” (see section 33.2.2 “ Uncommands’ as Keyword Values)

35.2 When Do You Need to Provide a Table
File?

Not al productsrequire atablefile. In particular, if no processing besides the internals and
defaults needs to be done for any UPS command run on a particular product, and if its ups
directory and documentation reside in the default areas, then the product doesn’t need atable

Table Files 35-1

file. However, for products that do need atable file (most), at least a rudimentary table file
must be in place before any instance is declared to atarget UPS database. If it’s not added
right away, users may seeincorrect behavior beforeit isthere.

35.3 Recommendationsfor Creating Table
Files

* Although table files can have any file name, we recommend that they be named as
<product >. tabl e (eg., enacs.tabl e)or <version>.table (eg,
v19 34b. t abl e) for easy identification. If atablefileisunique to aparticular
version of the product (which islikely because versions of product dependencies often
change along with the version of the main product) then the name should be
<product >_<version>.tabl e (eg., emacs_v19 34b.tabl e).

* Table files should not source any set up. [¢] sh script unless flow contral (if then
else, looping, etc.) isneeded. For assistance, contact uas-group@fnal.gov.

* Inmost cases, “un” actions (e.g., UNSETUP, UNCURRENT) are not needed (see section
33.2.2“ Uncommands’ as Keyword Values). If an“un” action is not specified in the
table file, UPS will undo what the corresponding action did (e.g., SETUP, CURRENT),
in reverse order, provided reversible functions were used (see section 34.2 Reversible
Functions).

* Individua groups or experiments at Fermilab may set standards regarding table files that
members should follow; contact your group leader to find out if there are any you need to
be aware of. For example, ODS prefers that table files be maintained in the UPS
database product subdirectory (e.g.,, $PRODUCTS/ eracs) rather than in the product’s
ups directory.

35.4 TableFile Structure and Contents

35.4.1 Basic Structure

The file starts with a header that identifies the file type and the product:

Fil e=Tabl e

Pr oduct =<pr oduct >
The basic structure of table file contents consists of an instance identifier followed by one or
more actions (described in Chapter 33: Actions and ACTION Keyword Values). By thetime
UPS accesses the table file, it has already determined the database, product name and product
version. Therefore FLAVOR and QUALIFIERS together are sufficient to identify the
instance.

35-2 TableFiles

Hereisasampletable file that illustrates the basic structure:

Fi | e=Tabl e
Pr oduct =exmh

FLAVOR=SunGS+5
QUALI FI ERS=""

ACTI ON=SETUP
set upRequi r ed(expect)
set upRequi r ed(mh)

ACTI ON=UNSETUP

User-defined keywords, described in section 27.2 Keywords: |nformation Sorage Format, can
also be included after an instance identifier for use within actions.

35.4.2 Grouping Information

When asingle table file represents multiple instances, a grouping structure can be
superimposed on this basic structure to organize the information. To avoid having to repeat
identical actions for a series of FLAVOR/QUALIFIER identifiers, the keyword FLAVOR can
takethevalue ANY intablefiles. FLAVOR=ANY istaken asabest match, assuming all other
instance identifiers match (see Chapter 26: Product Instance Matching in UPSUPD
Commands for more information on instance selection).

Grouping information within table filesis supported viathe use of the following three markers:

GROUP: Groups together multiple flavor/qualifier pairs. All entries
subsequent to GROUP: are part of this group until an END: marker
isfound.

COMMON: Groups together actions that apply to all instances represented in

GROUP:.. COMMON: isonly valid within a GROUP:..

END: Marks the end of a GROUP: or COMMON:. One END: marker is
used to jointly end a GROUP: and an included COMMON:.

UPS does not require grouping in table files; these markers are available for convenience and
for organizing information clearly. However, if GROUP: or COMMON: is used, END: must
appear at the end of it, even if that isthe very end of thefile.

35.4.3 The Order of Elements

Blank lines are ignored, and therefore can be placed anywhere.
* The first keywords after GROUP: must always be FLAV OR followed by QUALIFIERS
(i.e., theinstance identifiers).
* FLAVOR and QUALIFIERS cannot be included within a COMMON: grouping.
« User-defined keywords can be defined anywhere except between GROUP; and the
instance identifiers.

* Actions (described in Chapter 33: Actions and ACTION Keyword Values) for each
instance are located after the instance-identifying keywords, and often between a
COMMON: and END:.

Table Files 35-3

« All actions after COMMON: apply to all the FLAVOR-QUALIFIERS pairs listed above
it within the current GROUP.:.

« All statements apply to the most recently defined FLAVOR/QUALIFIER keywords
except for the statements between COMMON: and END: (which apply to all the flavors
in the current GROUP)

* GROUP:s cannot be nested.

35.5 Product Dependencies

35.5.1 Defining Dependencies

UPS product dependencies get listed in the SETUP action for the product instance in question.
The set upRequi red and setupOpti onal functions, described in section 34.3
Function Descriptions, can be used within the SETUP action to setup the dependencies along
with the main product. These two functions take the same set of options and arguments asa
norma set up command (see section 22.1 setup) in order to clearly specify the desired
instance of the dependent product. We discourage specification of particular versions of
products, and recommend using chainsinstead, e.g.,:

ACTI ON=SETUP

set upRequi red("perl")

This example sets up the default instance of perl, chained to current. Using chains, itis easier
to keep the dependencies and the main product in sync.

Products that are not maintained in the UPS framework can also be designated as
dependencies. You would need to use the function exeAccess tolocate and accessa
non-UPS executable through your $PATH. For example, the action:
ACTI ON=SETUP

set upOpti onal (gcc)

exeAccess(gcc)
tells UPS to setup the current instance of gcc if thereis one declared; the exeAccess
function checks for aversion of gcc in your $PATH, even if it’s not one that is managed by
UPS, and exits with an error if oneis not found.

35.5.2 Product Dependency Conflicts

When different dependencies include the same product via different dependency trees (and
therefore may require different instances of the same product), rules have been established to
determine which instance of the dependent product is selected and in which order the required
products are setup.

35-4 TableFiles

Selection Algorithm for Conflicting Dependencies
The rules are as follows:

1) First level product dependencies, defined as those products listed as dependenciesin the
table file of the main product instance, take precedence over lower level dependencies
when selecting which instance of the required product to set up.

2) Dependencies listed later in the table file take precedence over those listed earlier.

Example of Dependency Selection and Order of Setup

WEe Il take you through an example that illustrates how the dependencies are selected and in
what order they are setup. Our sample dependency structure starts with the product A asthe
parent product. It hastwo dependencies, which in turn have dependencies of their own. B
b1l refersto product B, version bl, and so on. (We recommend that devel opers avoid using
specific version dependencies in general; we use them in our example for illustrative
purposes.) Some of the dependencies are conflicting:

In A'stablefile:

product A
set upRequi red(B b1l)
set upRequi red(C c1)

In B bl'stablefile:

product B bl
set upRequi red(C c2)
set upRequi red(D d1)

In C c2'stablefile:

product C c2
set upRequi red(D d3)

In C c1'stablefile:

product C cl
set upRequi red(D d2)

Thetreeistraversed starting at A, then going down each dependency branch. So the order in
which the products are encountered is;

1) A (no conflict)

2) A'sdependencies B b1 and C cl are selected since they are the highest level
dependencies.

3) Start down B b1 branch: find C c2 (version cl already selected by rule 1; C c2 ignored)

4) Completing the B b1 branch, find D d1. Itisexamined, and ultimately passed over (by
rule 2) because D d2, adependency of C c1 and therefore also a second-level
dependency of A, is encountered later.

Table Files 35-5

35.6 Table File Examples

35.6.1 Examplelllustrating Use of FLAVOR=ANY

Below isasampletablefilefor the product exmh versionvl 6 6 which uses FLAVOR=ANY.
For the exmh instances whose version files point to this table file, all except those with
qualifiers share the same stanza:

Fi | e=Tabl e

Pr oduct =exnmh
#***
Starting Goup definition

G oup:

FI avor =ANY

Qualifiers=""

Common:
Acti on=set up
set upRequi r ed(expect)
set upRequi r ed(mh)
set upOpti onal (glinpse)
set upOpt i onal (www)

set upOpti onal (m et ool s)
setupOpti onal (ispell)
set upOpti onal (popclient)
prodDir ()
set upEnv()
pat hPr epend(PATH, ${ UPS_PRCD_DI R}/ bi n)
Acti on=configure
execut e(${ UPS_PRCOD_DI R}/ ups/ confi gur e, UPS_ENV)
End:

Actions, functions and variables as used in this example are described in Chapter 33: Actions
and ACTION Keyword Values, section 34.3 Function Descriptions and section 34.6 Local
Read-Only Variables Available to Functions, respectively.

You'll notice that there are no functions specified for unset up inthistablefile. Dueto the
defaultsthat UPS hasin place, when unset up isrunall of the set up functionswill be
reversed (the required products will get unsetup, the defined environment variables will get
undefined, and the product’s bi n directory will be dropped from $PATH. See sections
33.2.2 “ Uncommands’ as Keyword Values and 34.2 Reversible Functions.

35.6.2 Example Showing Grouping

Grouping isillustrated in the following example;

FI LE=Tabl e

PRODUCT=exmh
#***
Starting Goup definition

GROUP:

FLAVOR=I Rl X+5

QUALI FI ERS=""

FLAVOR=I Rl X+5
QUALI FI ERS="mi ps2"

35-6 TableFiles

COMVON:
ACTI ON=SETUP
set upOpt i onal (expect)

ACTI ON=CONFI GURE
execut e(${ UPS_PROD_DI R}/ ups/ confi gur e, UPS_ENV)

END:
#***
Starting Goup definition

GROUP:

FLAVOR=ANY

QUALI FI ERS=""

COMVON:
ACTI ON=SETUP
set upRequi r ed(expect)

ACTI ON=CONFI GURE
execut e(${ UPS_PRCD DI R}/ ups/ confi gur e, UPS_ENV)

END:

The second group (defined by FLAVOR=ANY) matches all the instances not matched in the
first group, except those with qualifiers.

35.6.3 Examplewith User-Defined Keywords

User-defined keywords are described in section 27.2 Keywords: Information Storage Format.
All user-defined keywords must have underscore (_) astheinitial character (e.g.,
_dest _ar ch). Thefollowing exampleillustrates their usein atablefile:

Fi | e=Tabl e
Pr oduct =vxboot
#***
Starting Goup definition
G oup:
Fl avor =NULL
Qualifiers="narrow29"
_dest _arch=ppc
_dest _env=VxWorks-5.3
_dest _type=WME2301
Conmon:
Acti on=set up
set upEnv()
envSet (VXB_DEST_ARCH, ${_dest _arch})
envSet (VXB_DEST_ENV, ${ _dest_env})
envSet (VXB_DEST_TYPE, ${_dest_type})

Table Files 35-7

35.6.4 Examples|llustrating ExeActionOpt Function

Example 1

In this example, there are actions for the first two instance identifiers, but not for the third. We
want to execute the XY Z action at setup timeif it’sthere, but continue processing if it'snot. To
do this, we must call the action usingthe exeAct i onQpt function.

FI LE=Tabl e
PRODUCT=f r ed
#***
Starting Goup definition
GROUP:
FLAVOR=SunCs+6
QUALI FI ERS=""

ACTI ON=XYZ

fileTest(/, -w, "You nust be root to run this comrand.")

FLAVOR=I RI X+6

QUALI FI ERS=""

ACTI ON=XYZ
fileTest(/, -w, "You nust be root to run this comrand.")

FLAVOR=I Rl X+6
QUALI FI ERS="mi ps2"
No XYZ action

COMVON:
ACTI ON=SETUP
exeAct i onOpt (XYZ)

END:

Example 2

Inthisexample, we usethe exeAct i onOpt function to instruct UPS to execute one action
or another, depending on whether the user supplies an option onthe set up command line.

FI LE=Tabl e

PRODUCT=f r ed
#***
Starting Goup definition

GROUP:

FLAVOR=ANY

QUALI FI ERS=""

ACTI ON=SETUP
exeAct i onOpt (XYZ_${ UPS_OPTI ONS})

ACTI ON=XYZ_
function_1()

ACTI ON=XYZ_FULL_LI CENSE
function_2()

35-8 TableFiles

If you run:
% setup fred

you'll execute ACTION XYZ_. To execute ACTION XYZ_FULL_LICENSE, you need to
run:

% setup fred -O FULL_LI CENSE

Table Files 359

35-10 TableFiles

Chapter 36: Scripts You May Need to Provide

with a Product

(&

In UPS v4, the functions supported for use in table file actions will not always suffice for
completing certain tasks, for instance configuration and tailoring. You may still need to
provide executabl e scripts, and include appropriate functionsin your table file to execute them.
In this chapter we discuss some scripts you may heed to provide with your product.

Since these types of scripts generally get executed only once, speed isn’t critical. We plan to
provide more functionsin later UPS releases so that scriptswill no longer be necessary for this
purpose.

Note that these files can be binaries, but scripts are recommended.

36.1 configure and unconfigure

The confi gur e executable must perform whatever steps are necessary to install the
product on a system, minus anything that requires direct interactive input from theinstaller. In
cases where the installer must supply some information, you can choosetousea t ai | or
script to collect data, and passthe valuesto the confi gur e script to use.

The unconfi gur e executable must undo everythingthat confi gure does. UPSis
“smart” enough that if one of the functions sour ceOQpt Check, sourceOpti onal ,

sour ceReqCheck, or sour ceRequi red isusedinthe CONFIGURE action, when
ups unconfi gure isrun, UPS canfind and source the

unconfi gure. ${UPS_SHELL} script.

Hereisan example. Say a CONFIGURE action specifies:

ACTI ON=CONFI GURE

sour ceOpt i onal (${ UPS_UPS_DI R}/ confi gure. ${ UPS_SHELL}, UPS_ENV)

When you runthe ups unconfi gure command, UPSfirst looks for
ACTION=UNCONFIGURE, asusua. Failing to find it, UPS next looks for
ACTION=CONFIGURE. Upon encounteringthe sour ceOpti onal function, it searches
for thefile unconfi gure. ${ UPS_SHELL} inthe samedirectory (${ UPS_UPS_DI R}),
and sourcesit.

Scripts You May Need to Provide with a Product 36-1

Sample Configure Script

Thetex_files product has agood example of a confi gur e/current script (they are
identical in this case):

#! / bi n/ sh

"current" and "configure" for $TEX_FILES_DI R/ ups/current

case "$TEX_FILES DIR" in
[af s*)
find $TEX_FILES DIR texnf/fonts/tnp -type d \
-exec fs setacl {} system anyuser rlidkw\;

*
)
chnod -R 1777 $TEX_FILES DI R/ texnf/fonts/tnp

esac

Thedirectory $TEX_FI LES DI R/ t exnf/font s/t np must be writable by anybody
using tex_files, in order that TeX can create the requested fonts on-the-fly from font metadata
files. (Thisway, rarely-used fonts can be generated as the document is created, and they don’t
need to be stored.) The script evaluates $TEX_FI LES_DI R. If it beginswith / af s, it runs
the appropriate AFS command to makethe t np areaworld-writable. If not, then it usesthe
standard UNIX chnod. UPS does not yet have “if-then-else” capability within table files, so
we can't write these things into actions. The table file calls the scripts via the actions:
action=configure
prodDir ()
execut e(${ UPS_UPS_DI R}/ confi gur e, UPS_ENV)
unprodDi r ()
action=current
prodDir ()
execut e(${ UPS_UPS_DI R}/ current, UPS_ENV)
unprodDi r ()
Asdescribed in section 33.5 Actions Called by Other Actions, one of theidentical scripts could
have been eliminated and a common action could have been used in this way:
action=configure
exeAct i onRequi red("common")
action=current
exeAct i onRequi red("common")
acti on=common
proddi r ()
execut e(${ UPS_UPS_DI R}/ confi gur e, UPS_ENV)
unprodDi r ()

Configure Scriptsfor Productswith Har d-Coded Paths

Asdiscussed in section 15.1.3 Third-Party Products Requiring a Hard-Coded Path, many
third-party products require a hard-coded path assigned when the product is built. Most of
these products come with configurable Makefiles thereby allowing you to choose the path.
The technical note TN0086 Use of "/usr/local/products’ now deprecated, on-line at

htt p: //ww. fnal . gov/ docs/ TN TNO086/ t n0086. ht m , describesrecommended
techniques for implementing these products. The third approach that it discussesinvolves
usingthe confi gur e script to modify atrampoline executable. Please refer to TN0O086 for
information.

36-2 Scripts Y ou May Need to Provide with a Product

36.2 tailor

Asdiscussed in section 3.6.2 Tailoring a Product, tailoring is the aspect of the product
implementation that requires input from the product installer (e.g., the location of hardware
devices for a software driver package, a specific areafor log files, which node should run the
server, etc.). If your product requires any interactive input from the installer, you will need to
furnisha tai | or executablefor this purpose. Generally t ai | or filesare scriptsthat ask
theinstaller aseries of questions, and writethe answerstoa <node>. dat filewhichinturn
getsread by the confi gure, current,and/or start scripts.

Usually undoing the stepsdonevia t ai | or requireinteractive input. However, if your
tailor steps are such that they can be undone via a script, go ahead and providean unt ai | or
script. Whenyou runthe ups unt ai | or command (avail able viathe unknown command
handler discussed in section 33.4 The “ Unknown Command” Handler), UPS will execute
unt ai | or, the same way asdescribed for unconfi gur e in section 36.1 configure and
unconfigure.

It still may be best to avoid including anythingin t ai | or that needsto be undone when the
product is removed and that requires input from aperson. If tai |l or isusedto collect
information and passit tothe confi gur e script (recommended), then anything that needs
to be undone can be addressed in unconfi gur e.

For asampletailor script, see $JUKE_DI R/ ups/tail or.

36.3 current and uncurrent

Most things that need to be done when a product instance is declared current can be done
directly viafunctionsin the table filein a CURRENT action. However, if the available
functions prove to be insufficient for your product, createa cur rent script to perform the
function(s).

Likewise, when a current chain is removed from a product instance, the uncur r ent script
(if it exists) should undo &l the thingsthat weredonein cur r ent . It worksthe same way as
UNCONFIGURE, described in section 36.1 configure and unconfigure.

A sample current scriptisshown in section 36.1 configure and unconfigure.

36.4 start and stop

The start and stop filesmay beneeded if your product needsto startup automatically at
boot time and run until system shutdown. Refer to Chapter 14: Automatic UPS Product
Sartup and Shutdown for information on thistopic. Inthetablefilefor this type of product
you must include the actions ACTION=START and ACTION=STOP. These actions must
include all the steps necessary to startup the product and shut it down. You may need to put
these steps in scripts and execute them from the table file. You can call the scripts whatever
you like, but werecommend start and st op for easy recognition.

Scripts You May Need to Provide with a Product 36-3

Sample start and stop Scripts

WE Il use scriptsfor juke v5 2 as examples.

The start script

#1/ bin/ sh

case "$0" in

/%) JUKE_DI R="echo $0 | sed -e 's;/ups/start;;’"
export JUKE_DI R
PATH=$JUKE_DI R/ bi n: $PATH

Y -

esac
cd $JWKE_DI R/ | og

host =" host nane”
I ocal =" $JUKE_DI R/ bi n/ j uke show jukebox | grep $host | sed -e ‘s/@*//" "

if ["$local" !'=""1]
then
if [-f $IUKE_D R/ | og/j ukerpcd. $host. pi d
then
it looks like one is running
if kill -0 “cat $JUKE_DI R/ | og/j ukerpcd. $host. pid’
then

#daenon i s already running, we're done
exit 0
f
f
nohup $JUKE_DI R/ bi n/j ukerpcd >> jukerpcd. $host.out 2>&1 </dev/null &
echo $! > $JUKE_DI R/ | og/j uker pcd. $host . pi d

sl eep 10 # wait for jukerpcd to wake up
for i in $local
do

if ["“uname -s*" = "AIX"]

then

Al X driver doesnt autoconfigure, so configure it
dev="$JUKE_DI R/ bi n/ j uke show j ukebox |
grep $l ocal
sed -e ‘s;.*/dev/;;’ -e ‘s/[1.%11"°
nkdev -1 $dev
fi
$JUKE_DI R/ bin/juke online -j $i &
done
f

36-4 Scripts Y ou May Need to Provide with a Product

The stop Script

#1/ bin/ sh

if ["" ="$JUKE_DR']

then
JUKE_DI R="echo $0 | sed -e ‘s;/ups/stop;;’"
export JUKE_DI R
PATH=$JUKE_DI R/ bi n: $PATH

fi

host =" host nane”

if [-f $JUKE_DIR/ | 0g/j ukerpcd. $host.pid]
then
kill -15 “cat $JUKE_DI R/ | og/j uker pcd. $host . pi d’
rm $JUKE_DI R/ | og/ j uker pcd. $host . pid
fi

Scripts You May Need to Provide with a Product 36-5

36-6 Scripts Y ou May Need to Provide with a Product

Chapter 37. Use of Compile Scriptsin Table

Files

Compile scripts can be used in table files to preprocess actions, thus speeding up considerably
the time it takes users to execute the actions. We describe the use of compile scriptsin this
chapter.

37.1 Overview

Generally, when a UPS command isissued, if UPS finds a corresponding action in the product
instance’s table file, the listed functions get executed. |If thisfunction list islengthy, the
command may take along time to execute. To speed up execution in these cases, UPS v4
supports the preprocessing of actionsin compile scripts. When you preprocess, you run the list
of functions once, store the output in a script, and then when the command is | ater executed,
the script is run instead of the functions.

This mechanism can be used for any UPS command, but it was developed withthe set up
commandinmind. If a set up command must setup many, many required products, reading
all thefilesfor instance matching can be slow. By use of a compile script, the files can be read
once, instead of each time auser runs set up on the product.

37.2 Usage Information

The use of compile scriptsis most easily explained using an example. The (partial) tablefile
below creates a compile script for the set up command when the product instance gets
configured. Alternatively, since ACTION=COMPILE is defined, you could manually run the
command ups conpi |l e to createthe script. The functions listed are described in section
34.3 Function Descriptions:

ACTI ON=CONFI GURE
exeAct i onRequi red(" COVPI LE")

ACTI ON=COWPI LE

writeConpil eScript("SETUP", "/nmy/conpilelscript")
ACTI ON=SETUP

sour ceConpi | eReq("/ my/ conpi | e/ script")

doDef aul t s()

set upRequi red("dog v2_0")
set upRequi red("cat v1_1")
... longlist. . .

set upRequi red(" mouse v3_9")

Use of Compile Scriptsin Table Files 37-1

This table file performs the following actions:

1) When the product instance is configured (via ACTION=CONFIGURE, which is
usualy run aspart of ups decl ar e), the function
exeAct i onRequi red(" COWPI LE") runsthe functions under
ACTION=COMPILE.

2) Thefunction writ eConpi | eScri pt (" SETUP",
"Iyl conpil el/script") under ACTION=COMPILE executesasingle
operation; run set up, and write the output of the setup actions to the script
/ my/ conpi |l e/ script. This witeConpil eScript functionexecutesall the
functions under ACTION=SETUP except the first one (wr i t eConpi | eScri pt
knowsto ignore sour ceConpi | eReq), and outputs the results to the script
my/ conpi | e/ scri pt. For example, for each set upRequi red line, it
completes all the instance matching, and outputs the matched instance to the script.

Later, when set up isrun by auser, thefirst function under ACTION=SETUP is executed
(sourceConmpi | eReq (" my/ conpil e/ script")),andtheremaining functions are
ignored. Therefore, none of the file reads have to occur during normal product setup.

The compiled script will contain hard-coded paths to the instances that were in effect when the
script was created. |f any product version, root directory or table file changes, the script must
be recompiled for set up towork properly. Use ups depend to determine what the
current dependencies are.

37-2 Use of Compile Scriptsin Table Files

Chapter 38. Creating and Formatting Man

Pages

In this chapter we show you how to create man pages, format them, and even create html
documents from them. Thisis not a comprehensive man page reference, but it contains
sufficient information for most purposes.

For further information, from the UNIX Resour ces Web page, see “How to Create Man
Pages’ under Software Development.

gj__;, First, afew notes;

» The man pages for aUPS product can go anywhere, aslong asthelocationis specifiedin
thetablefile. A recommended locationis ${ UPS_PRCD DI R}/ man for the
formatted pagesand ${ UPS_PRCD_DI R}/ cat man for the unformatted pages. The
UPS backwards-compatible default, however, is ${ UPS_UPS_DI R}/ t oman/ man
for the formatted pagesand ${ UPS_UPS_DI R}/ t oman/ cat man for the
unformatted pages.

» Man page file names should consist of the product name, a period, and the section
number as described in the following note. This applies to both formatted and
unformatted files, which are distinguished by residing in separate directories.

» Man pages for commands are generally maintained as section 1, and library and system
calls as section 3. The section number should appear as an extension of the man page
filename (e.g., hel |1 0. 1 for the command hello). Hereisafull listing of categories
by section:

user commands

system calls

C library functions (on some platforms 3c for C, 3f for FORTRAN, €tc.)
devices and network interfaces

file formats

games and demos

environments, tables, and troff macros

maintenance commands

X window system

- © 00 N O OB~ W NP

local commands
n new commands (tcl and tk usethis)

» We recommend using either of the utilities nroff or groff withthe - man optionto
format your man pagesin astandard way. These utilities are documented in many
standard UNIX texts, and you can aso find man pages for them.

Creating and Formatting Man Pages 38-1

38.1 Creating the Source Document (Unfor -
matted)

38.1.1 Source File Format

We recommend writing man pages in the source form using simple macros from the nroff
macro package - man. Most of these macros require adot (.) in the first column. The
following list of macrosis sufficient for writing standard man pages:

. TH <nanme> <section> <date>

Title Heading; specify product name, man page section (usually
1), and date, in this order, to produce a man page format of this

type:

nanme (section)

nanme (section)

...man page text...
date page nunber

. SH "<t ext >" Section Heading; if no blanksin text, quotes are not needed.

. SS "<t ext>" Subsection Heading; if no blanks in text, quotes are not needed.

.P Paragraph break

AP "<itenmp” Starts an indented paragraph where “item” is put to the left of it; if no
blanksin “item”, quotes are not needed.

. HP Starts a paragraph with a hanging indent; i.e. lines after the first are
indented

. RE Defines an indented region

. B "<text>" Bold; if no blanksin text, quotes are not needed.

" <text>" Italic; this shows up as underlined on most terminals. If no blanks

. TP <col ums>

in text, quotes are not needed.

Term/paragraph format; columns specify how many columns to
allocate to the term column. As an example, thisinput:

.TP 5

f1

is one option

. TP

f2

is anot her option

38-2

Creating and Formatting Man Pages

produces this output under nr of f - man:

f1 is one option

f2 i s anot her option

where“i s” startsin column 6. Noticethat thefirst . TP setsthe
column value of the term, and the second one picksit up.

.P New paragraph

. br Break line

. nf Nofill (used to suppress normal line filling; used for preformatted
text)

Cfi Fill (used to resume normal linefilling, usualy after a . nf)

A Comment line

38.1.2 Man Page Information Categories

Categories of information that you may want to include as section headings (. SH) are:

NAME
This should be the product name followed by a short description. Thetext onthislineis
also used as the keyword list for man -k and apr opos.

SYNOPSIS or SYNTAX
Document here the complete syntax of the command used to invoke the product.

AVAILABILITY
Document here the OS flavors for which the program is available.

DESCRIPTION
Document here afull but succinct description of the use of the product.

OPTIONS
Document here all the options available for the invoking command.

EXAMPLES
Document here situations in which the program can be used, if there are uses that are not
obvious.

NOTES
Document here any information the user should be aware of when using the command.

MESSAGES AND EXIT CALLS
Document here all errors and other messages returned to the user. Include the cause and
the recovery actions whenever appropriate and possible.

AUTHOR
Document here the product coordinator and/or the major developers and contributors,
aong with their particular areas of expertise, as appropriate.

HISTORY
Document here the significant changes in each release of the product.

Creating and Formatting Man Pages 38-3

RESOURCES
If your product is designed to work under X windows, document here any X resources that
affect the product’s behavior.

FILES
Document here all files, or at least their directoriesif there are too many files. Also
mention here any filesin the user's home area that are needed/accessed (e.g.,
$HOVE/ . mh_profil e, $SHOVE/ Mai | / conponent s for the mh and exmh
products).

BUGS
Document here things that do not (yet!) work as designed. Provide work-arounds
whenever possible.

CAVEATS
Document here things that work as designed but which may be unclear or surprising to the
user. (Thisisthe System V replacement for the BUGS category; you too can pretend your
product has no bugs!)

SEE ALSO
Document here other related commands and manual sections, especialy if not obvious.

38.1.3 Example Source File

In section 16.1.5 we presented a simple example for the product hello showing how to create a
formatted man page from asimple unformatted nroff input file. We will expand upon it here
to illustrate the macros listed above. The nroff sourceis created in

$HELLO DI R/ nman/ hel | 0. 1. Sample contents:

.TH HELLO 1 LOCAL

. SH NAME

hello - print "Hello world" on stdout
. SH SYNOPSI S

.B hello [options]

.1 option option

.BI"

o-yy -zz

.B..."]

. SH AVAI LABI LI TY

All UNIX flavors

. SH DESCRI PTI ON

hello prints the string "Hello world" on standard out put

. SH OPTI ONS

There are no options, but we'll make some up
.TP 5

=Yy

is one option

. TP

-2z
is anot her option
. SH AUTHOR

U R Friendly

38-4 Creating and Formatting Man Pages

38.2 Formatting the Source File

38.2.1 nroff

To create an ascii-formatted man page, you can run the utility nroff with the - nman macro
package as follows:

% nroff -man <input _file> > <output file>

We recommend following the prescription for unformatted and formatted man page locations
as stated above and in section 15.3. This ensures that the source file always gets run through
the formatter and the formatted file is never run through it again, which would produce odd
results. First, cd to the sourcefile directory:

% cd $HELLO DI R/ man

The following command creates the formatted man page for our hello example in the correct
directory:

% nroff -man hello.1 > ../catman/hello.1

Onceit isformatted, the example above will look like this:

HELLO(1) HELLO(1)

hello - print "Hello world" on stdout

SYNOPSI S
hello [options] option option [" -yy -zz ..."]

AVAI LABI LI TY
Al UNIX flavors

DESCRI PTI ON
hello prints the string "Hello world" on standard out put

OPTI ONS
There are no options, but we'll nmake sonme up.

-yy is one option
-zz is another option

AUTHOR
U R Friendly

LOCAL 1

Creating and Formatting Man Pages 38-5

38.2.2 groff

You can also use groff to format your man page source file. You must setup groff before use
(not necessary for nroff). The command:

%groff -man -Tascii <input_file> > <ascii_output_file>

produces ascii-formatted man pages (the same output as the nroff command above). If you
want to produce a PostScript output file, enter:

% groff -man <input _file> > <ps_output _file>

38.3 Converting your Man Pageto html For-
mat

An ascii-formatted man page can be run through the utility man2html and then accessed viaa
Web browser. First setup conv2html, then run the command:

% man2htm -title '<nanpage title> < <ascii_output _file> >\
<htm file>

38-6 Creating and Formatting Man Pages

Glossary

This glossary defines terminology asit is used in the context of UPS and UPD v4.

action

Also called aUPS action. Actions are used in table files to group together functions that
UPS must perform when a particular command isissued. An action consists of an
ACTION=VALUE keyword (e.g., ACTION=SETUP) plus any functions listed under-
neath it.

active product instance

The product instance that is currently setup. The active instance may be different than the
current instance.

archive UPS database

A UPS database on a product distribution node in which the UPS product instances are
stored in archive format (e.g., tar, gzip), available for downloading to a user node. Also
caled adistribution database.

bootstrap

build

chain

(In this manual, we discuss bootstrapping the Cor eFUE product, which includes UPS,
UPD and perl.) Install UPS/UPD on a machine on which no prior versions of these prod-
ucts areinstalled.

The process by which a distributable instance of a software product is constructed. The
build procedure results in a unique combination of product name, version, flavor, and
qualifiers. Theactual process varies by product and by developer. It can simply consist of
aset of copy commands, or be as sophisticated as generation of executables from a master
source library of the software.

A chainisaUPS database entry (in achain file) that points to a declared product instance,
tagging the product instance according to its release status (e.g., current, test). Chains
allow users to specify the version of aproduct according to its status, rather than by its
version number. The defined chain names are: current, test, development, new, and old.
Their corresponding options (or flags) used incommandsare: -c, -t, -d, -n, -o0.
The -g <chai nNanme> option allows definition of an arbitrary chain name.
Chainsare set by the ups decl ar e command; hence the term declare a product
instance as current.

chain file

Chain files reside in the product-specific directory under the UPS database directory, and
maintain the chain information. Chain files are named according to the chain name, and
endwith . chai n,eg., current.chai n. A chainfile's contentsissimply thelist of
the product instances (specified via sets of keyword/value pairs) that have been declared
with that chain.

Glossary GLO-1

cluster
For the purposes of this document, a cluster is set of CPU nodes which share one or more
UPS databases and product areas. Generally the nodes of a cluster also share (at least)
login areas.

configure a product instance

For any product instance that requires configuration, an ACTION=CONFIGURE lineis
provided in itstablefile, with functions listed beneath it. In UPS configuring a product
instance means executing these functions by issuing the ups confi gure command
with appropriate options. This happens by default when a product is declared, otherwise it
can be run manually. The functions perform all the configuration needed for the product
to run, minus that which requiresinput from theinstaller (seetailor a product instance and
INSTALL_NOTE for that portion).

coreFUE
A bundle of UPS, UPD and perl, the core pieces of the Fermi UNIX Environment.

current instance (of a product)
A product instance that is declared as current in the database (i.e., to which the chain “cur-
rent” points). The current instance of a product is the default for UPS and UPD com-
mands when no version or chain is specified. For a given product, there may be one
current instance each for several flavor/qualifier pairs.

daemon process
A background process that is configured to start up automatically on a system at boot time
and to stop at shutdown.

database
See UPSdatabase.

database configuration file
The UPS database configuration file contains system-specific information that customizes
the UPS installation on anode or cluster. If it exists, it must reside under the database
directory inthefile / pat h/ t o/ ups_dat abase/ . upsfil es/ dbconfi g.

declare a product instanceto UPS
The ups decl ar e command makes a product instance known to the UPS database
and accessible by UPS. Declaration does not by itself make the product instance usable
since any product requirements (and often other conditions) must also be satisfied, but
declaring the product instanceis a prerequisite for use (unless you' re using UPS products
without a database).

declare a product instance current
Declaring a product instance as “ current” essentially tags it as the default instance (when
itsflavor/qualifiers are matched). The declaration creates a current chain file or chain file
entry that pointsto the version filefor theinstance. Product instances can also be declared
as test, development, new or old, or as a user-defined chain for easy access.

declared product instance
Aninstance of a product which has been declared to a UPS database.

default function
The functions (as listed in section 34.3 Function Descriptions) that a UPS command com-
pletes (in addition to itsinternal processes) if no corresponding ACTION=COMMAND
keyword line is found in the matched tablefile, or if the function doDe-
faul t s([<ACTI ON>]) islisted under the corresponding ACTION=COMMAND
keyword line. Only thecommands set up and unset up actualy have default func-
tions.

GLO-2 Glossary

dependencies
Additional products that must be installed, declared, and setup to ensure the successful
operation of agiven product or to enable special features within it. When a product
instance is setup, its dependencies also get setup by default.

distribution database
A UPS database in which UPS product instances are available for distribution to user
nodes. A distribution database may bein archive or live format. The default distribution
database at Fermilab is KI TS which is maintained by the Computing Division on the
node fnkits.fnal .gov.

distribution node
Thistermisusedin UPD to refer to the node on which UPS products are stored and avail-
ablefor distribution to user nodes. A distribution node contains a distribution UPS data-
base (can be live or archive) and a distribution products area, and runs UPS, UPD, a Web
server and an FTP server (preferably WU-FTP). It is sometimes called a server node.

It is possible to maintain a distribution database on one machine running UPS and UPD
and a Web server, and maintain the corresponding distribution products area(s) on a differ-
ent one running an FT P server, if the machines share afile system.

end user
Anyone who uses UPS products, but does not install, update, maintain, or develop them.

FermiTools
FermiTools are Fermilab-devel oped software packages that are believed to have general
value to other application domains, and thus have been made publicly available in a spe-
cial subdirectory of KI TS viaanonymous FTP and www. They do not require UPS.
Installation and use instructions come with each product.

Fermi UNIX Environment (FUE)
FUE started as a project for providing a cross-department, cross-division structure for the
proposal, discussion, design and implementation of all things that affect the user when
operating in aUNIX environment at Fermilab. Currently it consists of scripts and pro-
gramsthat form auniform UNIX environment, standards documents, and the UPS suite of
tools (see htt p://wmv. f nal . gov/ cd/ FUE/).

flavor
To indicate the operating system (OS) dependency of a product instance, we use the term
flavor. This extraterm alows us to differentiate by operating system, and optionally OS
version, while maintaining the same product name and version number for separate
instances. Some products do not require customizing for the different operating systems
(typically those without compiled code), but most do and therefore comein several fla-
vors.

flavor table
A list of amachine'sflavor including every level of specificity that you could use to find
or declare aproduct instance. For example, on a SunOS+5.6 machine, the complete flavor
table reads:
SunGCs+5. 6
SunCs+5
SunGs
NULL
ANY
FTP server node
Asregards UPD, this node contains UPS product instances (and files associated with
them) that may be downloaded to a user node, and it runs an FT P server. Usually it isthe
same node as the Web server node, and called simply the server node or the distribution
node.

Glossary GLO-3

FUE
See Fermi UNIX Environment.

fullFUE
A bundle of coreFUE plus the pieces which are strongly recommended for on-site sys-
tems: systools, shellsand futil.
function
A UPS-defined entity used in table files that executes an operation within an action. The
supported functions are listed in section 34.3 Function Descriptions. One or more func-
tions always follow an ACTION=VALUE keyword line.
A function is specified in a shell-independent manner, but contains enough information to
alow it to be transformed into a sh or csh family command (e.g., sour ceRe-
qui red(),or execute()), ortobeinterpreted directly by UPS (e.g., wri t eCom
pileScript()).
install a product instance
Copy a product instance to alocal system from another location (usually from a distribu-
tion node) and perform the necessary steps to make it work.
INSTALL_NOTE
A file that describes procedures that the installer must perform manually to complete the
installation of aproduct. Thisfileis provided by the product developer as needed.
instance
See product instance.

internal processes (or internals)
The set of processes that a UPS command compl etes, regardless of the contents of the
product instance' s table file. Theinternal processes are driven by the command line
parameters and options, and relevant environment variables.

keyword
Keywords are used in the UPS database files. They are essentially parameters to which
values must be assigned. The supported set of keywords listed in section 27.4 List of Sup-
ported Keywords collectively contains the information UPS requires for managing a UPS
installation and all its UPS products. Some of the keywords can be used in al the UPS
product management file types, others are restricted to certain file types.

keyword value
The value assigned to a keyword in one of the UPS database files.

KITS
The name of the UPS product distribution database on the central product distribution
node at Fermilab, fnkits.fnal.gov. Thelocation of the KI TS databaseis / ft p/ upsdb.
UPS products are stored in the corresponding product area, / ft p/ products (sym-
linkedto /ftp/ KITS),astar files, generally. UPD commands accessthe KI TS data-
base and products area by default.

live UPS database
A UPS database in which the UPS product instances are unwound, i.e., not stored in
archived format (e.g., tar, gzip).

local UPS database
A live UPS database on alocal node. For user nodes, a database in which UPS product
instances are declared and available to be accessed and used.

local user node
See user node.

GLO-4 Glossary

make
The UNIX make utility isatool for organizing and facilitating the update of executables
or other fileswhich are built from one or more constituent files. See UNIX at Fermilab or
astandard UNIX reference text for more information.

Makefile
First, see make above. A Makefileis ablueprint that you design and that make uses to
create or update one or more target files (usually executables) based on the most recent
modify dates of the constituent files. See UNIX at Fermilab or astandard UNIX reference
text for more information.

operating system (OS)
A control program for a computer that allocates computer resources, schedules tasks and
provides the user with away to access the resources. See document DR0010 in the Com-
puting Division Web pages for the latest information on supported UNIX operating sys-
tems at Fermilab.

operating system version (OS version)
Like other software, an operating system gets fixed and enhanced periodically, and is
released by the vendor with a new version number (e.g., IRIX 5.1, IRIX 5.2). Sometimes
UPS products must be changed to continue to work properly under a new operating sys-
tem version.

operating system type (OStype)
The name of the basic operating system, without rel ease number, as returned by the com-
mand ups flavor -2 (for exampleRIX or SunOS).

overlay
An overlaid product gets distributed and maintained in the product root directory of its
main product. The set of products overlaid on amain product is collectively referred to as
the overlay.

parent product
A dependency’s parent product is that for which it is a dependency. A product may have
multiple parent products.

platform
Platform technically refers to the machine type (hardware) of a computer system. How-
ever, since until quite recently in the UNIX world there has been a near-perfect correspon-
dence between hardware platform and OS type (e.g., Digital Alphastations run OSF1),
sometimes platform is used loosely to refer to the OS type. This correspondence is chang-
ing as Linux can be run on PC, Digital, Sun and IBM hardware.

process an action
UPS converts the shell-independent functions listed underneath an ACTION keyword line
in atable file into code appropriate to the shell, and writes the output to a temporary file.
Thisiscall processing an action.

product
See UPS product

product developer
A person who develops and maintains software products, and makes them available for
distribution by installing and declaring them to the KI TS or other distribution database.
Sometimes called a product maintainer.

product installer
A person who downloads UPS products from a distribution node (through UPD, UPP or
FTP), installsthem on alocal system, and declares them to alocal UPS database (often
the local system administrator acts as the product installer).

Glossary GLO-5

product instance
The term product instance, or just instance, is used to represent a copy of a product,
namely a unique combination of product name, version, flavor and qualifiers within a
UPS database. For a given product, multiple instances may exist in the database to allow
users a choice of version and/or flavor/qualifier pair. A product instance may be chained;
hence the term “the current instance of a product”.

product name
The name of a UPS product asit appearsin its UPS database files.

product root directory
The directory in which a product instance (i.e. its executables) and (optionally) its associ-
ated filesreside. The product instance generally has a directory structure of its own, start-
ing at thisroot directory. Each instance of a product has a separate product root directory.

product user
See end user.

product version
The net result of any change to an existing product is that a new version of the product is
created; it is still the same product, but it will usually run alittle differently. The versions
of aproduct are tracked by version numbers, e.g., v1 0, vl 1, etc. UPSallows for multi-
ple versions of a given product to be accessible concurrently to end users.

PRODUCTS (or $PRODUCTYS)
The environment variable that points to the UPS database(s) on your system. If multiple
UPS databases exist, SPRODUCTS can be reset in your login files to a colon-separated
list of databases.

<PRODUCT> DIR (or $<PRODUCT> DIR)
PRODUCT hereisthe name of aproduct in upper case (e.g., EMACS DIR). Thisisthe
environment variable that points to the product root directory of the active instance of a
particular product; it gets set when the set up command isrun.

qualifier
The product developer may include information about options used at compilation time
(eg., debug or opti m zed) or other qualifying information for easy identification of
special compilations. Thisinformation is declared in the form of qualifiers. Qualifiers,
when present, are part of the unique instance identification along with product name, ver-
sion and flavor.

read-only variable
UPS sets several read-only variables that can be used in functionsin table files. Many of
them correspond to keywords set in the UPS configuration file. Thereis another set of
read-only variables available for use in setting location definitions in the UPD configura-
tionfile.

root directory for product
See product root directory.

setup
Each installed, declared UPS product instance requiresthat the set up command be
issued prior to use (unlessit is a dependency of onethat is already setup). set up per-
forms the necessary operationsin your login environment to make an installed, declared
product accessible to you. Typically, the operations include modifying environment vari-
ables or adding to your $PATH. Any dependencies defined for the product get setup by
default at the same time.

GLO-6 Glossary

tablefile
Table files contain non-system-specific and non-shell-specific information that UPS uses
for installing, initializing, and otherwise operating on product instances. That is, informa-
tion pertinent to one or more product instances, independent of the installation machine.
Tablefiles are provided by the product devel oper as needed.

tailor a product instance
Tailoring is the aspect of the product implementation that requires input from the product
installer (e.g., specifying the location of hardware devices for a software driver package).
If the product requires tailoring, afileisusually supplied in the format of an interactive
executable (script or compiled binary), and it is run by issuing the ups tail or com-
mand with appropriate options. To tailor a product instance means to run this action, and
hence, run thefile.

tar
Thetar (tape archive) utility can create, add to, list, and retrieve files from an archivefile.

tar file

A tar fileisin archived format, and must be unwound for use. UPS products are generally
storedin KI TS astar files.

unknown command handler
A UPS feature that allows user-defined actions (e.g., ACTION=XY Z followed by
UPS-supported functions) in table files that can be run viaa corresponding UPS-style
command (e.g., ups xyz [<options>] <product> [<version>])
unsetup
unset up generaly undoes the changes to the user’s software environment made by
set up in order to make the product no longer available for use. Any dependencies get
deactivated automatically at the same time by defaullt.

UPD - Unix Product Distribution
A companion product to UPS which provides the functionality for uploading/download-
ing products between local systems and product distribution servers.

UPD commands
Any of the commands supported by UPD. They are listed and described in Chapter 23:
UPD/UPP Command Reference. These include commands to retrieve UPS products or
certain individual files or directories from a distribution database, and commands to man-
age products within a distribution database.

UPP - Unix Product Poll
A layer on top of UPD that allows aclient to request notification of changes in a distribu-
tion node database and to download pre-specified products. UPP can be automated. This
isauseful tool for keeping abreast of changes/enhancements to your favorite products.

UPS - Unix Product Support
UNIX Product Support (UPS) is a software support toolkit which provides a methodol ogy
for creating/managing al the UNIX products provided and/or supported by the Comput-
ing Division, and auniform interface for accessing these products. UPSisitself a product
that must be installed on any machine that will be used to run other UPS products.
UPS has two parts: one or more databases which function as a central repository of infor-
mation about the products, and a set of procedures/programs to manipulate the data-
base(s).

UPS action
See action.

UPS commands
Any of the commands supported by UPS to manage productsin a UPS environment.
They arelisted and described in section Chapter 22: UPS Command Reference.

Glossary GLO-7

UPS database
A directory that functions as a repository of information about al the installed, accessible
UPS product instances on asystem. UPS alows multipleinstalled and declared instances
of each product. The database contains files for each product which store pointers to and
information about the declared instances of the product.

upsdirectory (or upssubdirectory)
A directory that may contain miscellaneous important files for a product instance; e.g., its
tablefile, scriptsthat the table file needs to execute, and so on. This directory may reside
anywhere; it often resides directly under the product instance's root directory. Not all
products have ups directories.

UPS product
Software products distributed and managed by the UPS system are called UPS products.
UPS products include Fermilab-written programs, a wide range of public domain soft-
ware, and ahost of third party licensed (proprietary) products. UPS products are available
for distribution inthe Kl TS database on fnkits.fnal.gov.

user node
A node from which users can run UPS products; usualy contains alive local UPS data-
base and locally-installed products.

version
For a product see product version; for an operating system see operating system version.

version file
A version file contains system-specific information for each instance of a UPS product.
One version file must exist in the product-specific directory under the UPS database direc-
tory for each version of a product that is declared to the UPS database. The name of the
version file isthe version number followed by . ver si on,eg., v2_2. versi on.

Web server node
Asregards UPD, this node contains one or more distribution databases and runs a Web
server, and coreFUE. Usually it is the same node as the FT P server node, and called sim-
ply the server node or the distribution node.

GLO-8 Glossary

| ndex

Symbols

"-?' option 2-1, 10-1
+ argument for -K option 2-3
.updfiles directory 1-6
.upsfiles directory 1-6
[etclinit.d directory 14-5
[etc/rc*.d directories 14-5
lusr/local/ area
Fermilab policy regarding use of 15-2, 15-3
@ symbol 27-8
use with keywords 22-46
_UPD_OVERLAY keyword 16-7, 27-11
description 27-8

Variables

$<PRODUCT>_DIR variable 34-18
as set during setup 22-5
description 22-5
${DASH_PROD_FLAVOR} read-only variable 31-4
${ DASH_PROD_QUALIFIERS} read-only variable 31-5
${ PROD_DIR_PREFIX} read-only variable 31-5
${ PRODUCTS} read-only variable
comparison to PRODUCTS env variable 34-19
description 34-19
${ SUFFIX} read-only variable 31-5
${UPD_USERCODE_DB} read-only variable 3-4
${ UPD_USERCODE_DIR} read-only variable 3-4
$ UPS_BASE_FLAVOR} read-only variable 31-4
$ UPS_COMPILE} read-only variable
description 34-19
${ UPS_EXTENDED} read-only variable
description 34-19
${UPS_OPTIONS} read-only variable
description 34-19
${ UPS_ORIGIN} read-only variable
description 34-19
${UPS_OS_FLAVOR} read-only variable
description 34-19
${UPS_PROD_DIR} read-only variable
description 34-19
$ UPS_PROD_FLAVOR} read-only variable 31-4
description 34-19
$ UPS_PROD_NAME} read-only variable 31-4
description 34-19
${ UPS_PROD_QUALIFIERS} read-only variable 31-4
description 34-19

${ UPS_PROD_VERSION} read-only variable
description 34-19
${UPS _THIS DB} read-only variable
description 34-19
$ UPS_UPS DIR} read-only variable
description 34-20
${ UPS_USERCODE_DB} read-only variable 31-4
${ UPS_USERCODE_DIR} read-only variable 31-4
${ UPS_VERBOSE} read-only variable
description 34-20
$PATH variable 1-10, 2-10, 22-11
$PRODUCTS variable 1-6, 1-10, 25-4
as used in UPD commands 26-1
asused in upd install 5-2
comparison to read-only ${ PRODUCTS} 34-19
for multiple databases 25-2
use in database selection 26-1
use with private database 11-9
with AFS database 12-4
$SETUP_<DIR> variable 34-18
as set during setup 22-5
$SETUP_<PRODUCT> variable
description 22-5
use with unsetup command 22-6, 22-11
$SETUP_UPS variable 1-10
$TEMPDIR variable
use with upd addproduct 17-1, 23-7
$UPS_DIR variable 1-10
$UPS_EXTENDED variable
as set by -e option 24-2
$UPS_EXTRA_DIR variable 12-5
$UPS_OPTIONS variable
as set by -O option 24-4
$UPS_SHELL variable 1-10

"@" Keywords

@COMPILE_FILE keyword 22-47, 27-9
@PROD_DIR keyword 22-48, 27-9
@TABLE_FILE keyword 22-48, 27-10
@UPS_DIR keyword 22-48, 27-11

A

access.conf file 20-11
accessing a UPS product 2-8, 22-5

Index

IDX-1

accounts
for managing distrib node 20-3
for product installation 11-1, 11-2
ftp 20-3, 20-8
separate by product category 11-2
the products account 11-1
updadmin 20-3, 20-5, 20-12, 21-6
wwwadm 20-3, 20-4, 20-7, 20-8
ACTION keyword
"unchain" names as values 33-3
chain names as values 33-3
description 27-4
detailed 31-5, 33-1
UPS command as keyword value 33-1
usein tablefiles 34-1
user-defined values 33-3
actions
"unchain" name as keyword value 33-3
and "unactions' 33-2
called by other actions 33-4
chain name as keyword value 33-3
examples 34-18
functions used in 34-1
overview 31-5, 33-1
processing of 24-9
reference 33-1
undoing chainsin table files 33-3
undoing reversible functions 33-2
UPS commands used as 33-1
usein tablefiles 33-1
use in updconfig 31-5
use with "unknown" commands 33-3
add chain to product on distrib node 17-7, 23-33
add product to distrib node 17-3, 23-3, 23-8
using template_product 18-6
add product to KITS 17-3, 23-3, 23-8
specia product registration 17-3
add table file to distrib node 17-5
update for existing product 17-6
add ups directory to distrib node
update to existing product 17-6
addAlias function
description 34-2
AFS
$PRODUCTS variable 12-4
$UPS_EXTRA_DIR variable 12-5
configuring local database 12-2
installing into local database 12-5
installing into local products area 12-4

installing product into AFS product area 8-3

local configuration options 12-1
local FUE initialization files 12-3
products requiring special privileges 12-6
providing access to AFS products 12-1
updating /usr/local/bin 12-6
upsdb_list file 12-2
using AFS UPD and installing locally 8-2
using local database with 12-1, 12-2
AFS database
use with local database 5-3
aliases defined by UPS 1-10
announcement of new/updated product 17-10
anonymous FTP 7-5
download files from fnkits 7-2

apache product
for distrib node web server 20-5, 20-10
apropos command 38-3
ARCHIVE_FILE keyword 22-47
asset by -T option 24-4
description 27-4, 28-2
AUTHORIZED_NODES keyword 22-47, 30-1
as set by -A option 24-1
description 27-4, 28-2
autostart
configuring UPSto allow 14-1
control files 14-3
permissions 14-4
disabling 14-5
installing product for 14-2
START action 14-3
start script example 36-4
STOP action 14-3
stop script example 36-5
TAILOR action 14-3
ups script 14-1
ups_shutdown script 14-1, 14-2
ups_startup script 14-1, 14-2

B

bin directory of product 16-1, 16-3, 16-5, 18-4, 19-1

description 15-6
bootstrapping CoreFUE

bootstrap script 13-1, 13-5
config.custom file 13-2
configurator script 13-2
customizing configuration 13-3
log file 13-5
predefined configurations

for NT 13-2

for UNIX 13-1
running the procedure 13-5
sample customization 13-4
space requirements 13-1
stagel.sh file 13-1, 13-5
stage2.sh file 13-5
user defined configurations 13-2
user-customized configuration 13-2

C

catman directory 15-7
CATMAN_SOURCE_DIR keyword 22-47
description 27-4
CATMAN_TARGET_DIR keyword 22-47, 30-1
description 27-4
CD-ROM
product distribution 20-14
setup product directly from 22-7
chain
adding product to distrib node 17-3, 23-7
as action in table files 33-3
change (on declared instance) 10-7
current 1-4
declare at product declaration 3-6, 10-2
declare to installed instance 10-4

IDX-2

Index

definition 1-4
development 1-4
new 1-4
old 1-4
remove and add new 10-7
remove from instance 10-6
specification in command 25-1
test 1-4
usage 1-5
use in instance matching 26-3
user-defined 1-4
chain files 1-6, 22-79, 29-1
and product removal 10-7
creating 29-1
description 29-1
examples 29-3
information storage format 29-1
instance matching within 26-3
keywords 29-1
overview 27-1
CHAIN keyword 22-47
description 27-4, 29-2
chain names 1-5
chain options 1-5
change achain 10-7
change product chain on distrib node 17-7
command defaults 1-8
command output formats for ups list 24-7
command syntax 1-8
description 25-1
comment solicitation INT-5
COMMON: keyword 35-3
description 27-4
usein tablefiles 35-3
use in updconfig file 31-2
COMPILE action 37-1
compile script 37-1
COMPILE_DIR keyword 22-47, 27-9
description 27-4, 28-2
COMPILE_FILE keyword 22-47, 27-9
as set by -b option 24-1
description 27-4, 28-2
config.custom file 13-2
configurator script 13-2
configure a product instance 3-9, 22-13
in AFS space 8-5
CONFIGURE action 10-8, 22-80, 36-1
configure script 36-1
for prebuilt binaries 16-5
configuring distribution node 20-1
conventions, notational INT-3
copy aproduct declaration 22-19
CoreFUE
and AFS 12-1
bootstrapping 13-1
components 12-4, 12-5, 13-1
customizing configuration 13-3
local installation on AFS machine 12-4
predefined configurations
for NT 13-2
for UNIX 13-1
running the bootstrap procedure 13-5
sample bootstrap customization 13-4
space requirements 13-1
user defined configurations 13-2

courtesy links to initialization files 1-9
create a database

checklist for preparation 11-9

on machine running AFS 12-2
cron

use to automate UPP 4-3, 6-4
CURRENT action 36-3
current chain 1-4

as default 1-8
current script 36-3
CVS17-9

use with template_product 18-8
CYGWIN

bin directory 11-8

perl version 11-7

UPS/UPD installation issues 11-7

D

database (See UPS database)
database configuration file (See UPS configuration file)
database files

chain files29-1

included comments 27-3

keywords 27-1

location 11-6

ownership 11-3

permisisons 11-3

pointersto directories 11-6

syntax 27-3

UPD configuration file 31-1

UPP subscription file 32-1

UPS configuration file 30-1

version files 28-1
database on distrib node

file permissions 20-7

host-based access restriction 20-6

user-based access restriction 20-6
database selection algorithm 5-2, 26-1
database specification in commands 25-4
dbconfig file (See UPS configuration file)
dbconfig.template file 30-1

listing 30-2
declare achain to an instance 3-6, 10-2, 22-21
declare aproduct 3-5, 10-1, 22-21

after download via FTP 3-5, 10-1

as part of installation 5-1

declare chain at same time 3-6, 10-2

node/flavor-specific functions present 10-4

specifying ups dir and table dir 3-5, 10-2

to local database 7-4
DECLARED keyword 10-6, 22-47

description 27-4, 28-2, 29-2
DECLARER keyword 10-6, 22-47

description 27-4, 28-2, 29-2
defaults for UPS/UPD commands 1-8

Also see command reference chapters
delete product component from distrib node 17-8
delete product from distrib node 17-8

using template_product 18-8
dependencies

and unsetup command 22-11

conflict resolution 35-4

Index

IDX-3

cross-database support for 1-5
database selection for install 5-3
definition 1-5
finding them for a product 2-7
list using ups depend 2-7
multiple levels of 1-5
non-UPS products 35-4
on distribution node, list using upd depend 4-5
order of product setups 35-5
setupOptional function in table file 35-4
setupRequired function in table file 35-4
dependency matching 26-2
DESCRIPTION keyword 22-47
description 27-4, 28-2, 29-2
determineif product update needed
using upd install -s 10-13
using upd update -s 10-13
using upp 10-13
development chain 1-4
use during product development 16-2
distributing UPS products
announcement policies for new products 17-10
overview 17-1
to KITS (checklist) 19-3
to KITS (using template_product) 19-3
distribution node
~ftp area 20-4
access restrictions on database
host-based 20-6
user-based 20-6
configuration and management 20-1
configure and manage 20-1
fnkits.fnal.gov 3-2, 7-2
FTP server 20-1
configuration 20-7
KITS database (on fnkits.fnal.gov) 3-2
limiting product distribution 20-11
nodes other than fnkits 7-4
option_list product description 20-12
reporting on FTP and Web accesses 20-10
response to upd addproduct command 20-2
response to UPD commands 20-1
response to upd install command 20-2
response to upd modproduct command 20-2
restrict downloads from database 20-11
restrict uploads to database 20-11
updconfig pre and postdeclare actions 20-10
user accounts 20-3
web server 20-1
configuration 20-5
doc directory 15-7
documentation for products 15-7
doDefaults function
description 34-3

E

editing database files 10-11
END: keyword 35-3
description 27-4
usein table files 35-3
use in updconfig file 31-2

envAppend function
description 34-3
environment
and usage of command options 25-4
changes made by UPS 1-10
initializing for UPS 1-9
envPrepend function
description 34-4
envRemove function
description 34-4
envSet function
description 34-5
envSetlfNotSet function
description 34-5
envUnset function
description 34-5
examples directory 15-7
exeAccess function
description 34-6
exeActionOptional function
description 34-6
useto call another action 33-4
exeActionRequired function
description 34-6
useto call another action 33-4
execute function
description 31-6, 34-7
use in dbconfig 31-6

F

Fermi UNIX Environment
initializing 1-9
FermiToolsINT-2, 4-6, 7-1, 7-2, 21-3
FILE keyword 30-1
description 27-5, 28-2, 29-2
file ownership
considerations 11-3
database files 11-3
product files 11-3
file permissions
configuring UPD to set (product files) 11-2
database files 11-3
extra security 11-3
unwound tar files 11-2
file system semantics
and group ids 11-2
Berkeley 11-2
setting 11-2
SystemV 11-2
fileTest function
description 34-7
flavor
ANY, asused in flavor matching 26-4
definition 1-3
NULL 1-3
specification in KITS 1-3
FLAVOR keyword 22-47
description 27-5, 28-2, 29-2
value ANY 35-3
flavor levels 2-2, 24-7
flavor of machine, determining 2-1, 22-35

IDX-4

Index

flavor specification
(-f, -H and number options) 1-3
use in instance matching 26-3
flavor table 24-7
definition 2-2, 22-36
flavor.products file 14-3, 14-5
permissions 14-4
fnalonly products 21-3
fnkits.fnal .gov distribution node 4-1
adding products to 23-8

anonymous FTP for downloading products 7-1, 7-2

config file locations 21-6
database location 21-6
directory hierarchy 4-6
FermiTools 4-6, 7-1, 7-2
FTP server log file 21-7
ftpgroups file 21-6
KITS database 3-2
KITS product categories 21-3
product pathnames for FTP access 4-7, 4-8
product permissions 4-6
proprietary products 4-8
registration for downloading products 3-2, 7-2
server maintenance 21-6
using FTP to download products 7-1
web server log file 21-7
formatted ups list output 22-45
FTP
declare product after download 3-5, 10-1
downloading product components 7-1
product installation 7-1, 7-2, 7-5
FTP server
access file 20-11
log file on fnkits 21-7
log searcing 20-13
on distrib node 20-1
ftpaccess file 20-7, 20-11
ftpgroups file 21-6
ftpweblog product 20-10
FUE initialization files
courtesy linksto 12-3, 12-5, 12-6
for use with AFS 12-3
functions
addAlias 34-2
case (in)sensitivity of 34-1
doDefaults 34-3
envAppend 34-3
envPrepend 34-4
envRemove 34-4
envSet 34-5
envSetlfNotSet 34-5
envUnset 34-5
examples 34-18
exeAccess 34-6
exeActionOptiona 34-6
exeActionRequired 34-6
execute 31-6, 34-7
fileTest 34-7
overview 34-1
pathAppend 34-8
pathPrepend 34-8
pathRemove 34-9
pathSet 34-9
preprocessing via compile script 37-1
prodDir 34-9

reference 34-1

reversible 33-2, 34-1

setupEnv 34-10

setupOptional 34-10
setupRequired 34-10
sourceCompileOpt 34-11
sourceCompileReq 34-11
sourceOptCheck 34-12
sourceOptional 34-13
sourceReqCheck 34-13
sourceRequired 34-14

to be added in future 34-17
translation into shell commands 24-9
unAlias 34-14

unProdDir 34-14

unsetupEnv 34-15
unsetupOptional 34-15
unsetupRequired 34-16

use with ACTION keyword 34-1
writeCompileScript 34-16

G

-g option for user-defined chain 1-5
groff command

ascii output 38-6

-man option 38-1

PostScript output 38-6
GROUP: keyword 35-3

description 27-5

usein tablefiles 35-3

use in updconfig file 31-2

H

hardcoded paths problem 15-4

help on UPS/UPD commands 2-1, 10-1

help online
ups help command 22-41

html directory 15-7

HTML_SOURCE_DIR keyword 22-47
description 27-5

HTML_TARGET_DIR keyword 22-47, 30-2
description 27-5

include directory 15-7

independent table file 17-5

Info directory 15-7

INFO_SOURCE_DIR keyword 22-47
description 27-5

INFO_TARGET_DIR keyword 22-47, 30-2
description 27-5

init.d directory
location 14-1

initializing UPS environment 1-9
courtesy linksto files 1-9

Index

IDX-5

INSTALL_NOTE file 7-1, 15-6, 19-1
configuring product 22-15

mention of node/flavor-specific functions 10-4

mention of unconfigure actions 10-8
sample 16-9

installation methods for UPS products, summary 3-1

installer accounts
choosing 11-1
file system semantics 11-2
multiple 11-1, 11-2
products account 11-1
separate by product category 11-2
setting gid 11-1, 11-2
single 11-1
UPD configuration issues 11-2
installing a product
choose whether to declare qualifiers 3-8
components to download (using FTP) 7-1
configuring 3-9
declare manually after FTP download 7-4
for development/testing 5-3
interruption during install 3-8
into AFS space 8-3
into private database 11-9
KITS product categories 17-3
KITS special product registration 17-3
local install using AFS UPD 8-2
onto distrib node 17-3
pass options to local declare 5-2
procedural checklist when using UPD 5-3
products requiring special privileges 8-1, 12-6
root privileges 12-6
table file product 17-5
tailoring 3-9, 22-67, 22-69
troubleshooting 9-1, 10-17
ups installasroot command 12-6
using FTP7-1, 7-2, 7-4
using UPD 5-1
using UPP 6-1
with all dependencies (using UPD) 5-5
with different name than on server 3-8
with no dependencies (using UPD) 5-7
with required dependencies (using UPD) 5-7
instance
declare achain for 10-4
definition 1-4
determine if update needed 10-13
determine instance to act upon 26-1
install and declare 5-1
specification via chain or version 25-4
specify multiple onesin command 25-3
verify integrity of 10-10
instance matching 26-1
in chain file 26-3
in table file 26-3
in updconfig file 31-2
inversion file 26-3
use of flavor and qualifiers 26-4
instance selection by chain 1-4
instance specification on command line 25-4
internal command processes 24-9

K

-K option
description for use with ups list 22-46
keyword arguments 2-3, 22-46
with upd list 4-2
with ups depend or upd depend 2-8, 22-30
keywords 27-1, 28-1
case (in)sensitivity of 27-2
DECLARED 10-6
DECLARER 10-6
definition 27-2
in ups list output 2-3
list with descriptions 22-47, 27-3
list with file types 27-3
MODIFIED 10-6, 10-13
MODIFIER 10-6
overriding values 27-3
syntax 27-2, 27-8
use of @ symbol 22-46
used with -K optionin upslist 2-3
user-defined 27-2
KITS4-1
adding products to 23-8
dbconfig file 21-1
FermiTools 7-1, 21-3
fnalonly products 21-3
product categories 21-3, 23-8
product registration for special categories 21-3
proprietary products 21-3
registration 4-6, 7-2
updconfig file 21-2
updconfig pre and postdeclare actions 21-4
using FTP to download products 7-1
US-only products 21-3
KITS distribution database 17-3

L

lib directory 15-7
licensed products
permissions 11-3
link for hard-coded paths 36-2
linksto initialization files 1-9
list al current products 22-49
list al fields for a product 2-6, 22-51
list dependencies on distribution node 4-5, 23-15
list product dependencies 2-7, 22-27
list products in database 2-4, 22-49
list products on distribution node 23-31
use in troubleshooting product installs 9-1
location of database files 11-6
location of product files, considerations 11-4, 11-5

M

man directory 15-7
man -k command 38-3

IDX-6

Index

man page
ascii output 38-6
convert to html 38-6
determine directory for 11-6
file names 38-1
groff 38-1
information categories 38-3
location of files 38-1
nroff 38-1
nroff output file 38-5
nroff source file 16-3, 38-4
PostScript output 38-6
section numbers 38-1
MAN_SOURCE_DIR keyword 22-47
description 27-5
MAN_TARGET_DIR keyword 22-47, 30-2
description 27-5
manzhtml command 38-6
managing distribution node 20-1
matching product instance
in chain file 26-3
intable file 26-3
in updconfig file 31-2
inversion file 26-3
use of flavor and qualifiers 26-4
MODIFIED keyword 10-6, 22-47
description 27-5, 28-2, 29-2
updating 22-71
used to determineif update needed 10-13
MODIFIER keyword 10-6, 22-47
description 27-5, 28-2, 29-2
updating 22-71
multiple databases
adding a private database 11-9
AFS and local 8-2
and your UPD configuration 3-4
configuring UPD for 31-9
database selection algorithm 26-1
default database 1-8
how UPD selects a database 5-2, 26-1
reasons for using 11-6
specifying $SPRODUCTS 1-8, 25-2
support for 1-6
-z option for specifying database 24-5

N

new chain 1-4
news directory 15-7
NEWS_SOURCE_DIR keyword 22-48
description 27-6
NEWS_TARGET_DIR keyword 22-48, 30-2
description 27-6
NFS-mounted database
using local database with 12-1
NIS cluster 12-1
node.products file 14-3, 14-5
permissions 14-4
notational conventions INT-3
nroff command 38-4
for man page 16-3
-man option 38-1, 38-5
NULL flavor 1-3

number options (-0 through -3) 2-2, 22-36
usage information 25-4

O

old chain 1-4
online help
ups help command 22-41
option flags
command-specific info in reference chapters
embedded spaces in arguments 25-2
grouping in commands 25-2
invalid arguments 25-3
multiple arguments 25-2
multiple occurrences 25-3
wildcards 25-4
option usage in commands 25-4
option_list product
description 20-12
order of command line elements 25-1
ORIGIN keyword 22-48
description 27-6, 28-2
OS determination using ups flavor 2-1, 22-36
overlaid products 1-6, 16-7, 27-11
overlays 1-6, 16-7, 27-11

P

parent product determination 10-8, 22-79
parse ups list output
in perl 22-52
in sh script 22-53
pathAppend function
description 34-8
pathPrepend function
description 34-8
pathRemove function
description 34-9
pathSet function
description 34-9
perl
parse ups list output in 22-52
version for use with CY GWIN 11-7
permissions
configuring UPD to set for product files 11-2
database files 11-3
extra security 11-3
on downloaded products 3-7
on files created in distrib database 20-7
unwound tar files 11-2
pointersin database files 11-6
pre-built binary products 16-5
inserting into template_product 18-4
pre-build checklist 19-1
PROD_DIR keyword 22-48, 27-9
as set by -r option 24-4
description 27-6, 28-2
PROD_DIR_PREFIX keyword 3-4, 22-48, 27-9, 30-2
description 27-6
prodDir function
description 34-9
product announcement checklist 19-3

Index

IDX-7

product categoriesin KITS 17-3
default 21-3
FermiTools 21-3
FNAL only 21-3
proprietary 21-3
registration for special categories 17-3
U.S. only 21-3
product dependencies (See dependencies)
product dependency matching 26-2
product development 16-7
announcement policies for new products 17-10
checklist for building product 19-2
checklist for distributing to KITS 19-3
checklist for pre-build 19-1
checklist for product announcements 19-3
checklist for testing 19-2
code management system 16-6
compile script 37-1
configure script 36-1
configure third-party product 16-6
current script 36-3
declaring product during development 16-2
distributing the product 17-1
documentation location 15-7
example procedure for simple product 16-1
man page creation 16-3
overlaid products 16-7
pre-build checklist with template_product 19-1
pre-built binaries 16-5
prep for rebuilding 16-6
read-only variables 34-18
recommendations
fully-specified flavor 15-1
location determination 15-2
nonuse of /usr/local/bin 15-2
nonuse of /usr/local/products 15-3
reproducible build procedure 15-3
self-containment 15-2
shell-independence 15-1
system-independence 15-3
sample directory hierarchy 16-2
selection of build node 16-7
simple build procedure 16-1
start script 36-3
stop script 36-3
tablefiles 35-1
sample 16-2
tailor script 36-3
testing product 16-4, 18-5
third-party products 15-3
uncurrent script 36-3
unflavored scripts 16-4
using template_product 18-1
vendor-supplied products, rebuilding 16-6
product development tools
buildmanager 15-5
CVS15-5
template_product 15-6
product distribution
announcement policies for new products 17-10
overview 17-1
using template_product 18-1, 18-6
viaCD-ROM 20-14
product distribution node (See distribution node)
product documentation 15-7

product files
configure UPD to set location 11-4, 11-5
location 11-4, 11-5
ownership 11-3
permissions 11-3
product flavor 1-3
product installation (See installing a product)
product instance (see instance)
product instance matching (See instance matching)
PRODUCT keyword 22-48
description 27-6, 28-2, 29-2
product registration for KITS 21-3
product removal (See remove a product)
product root directory 15-6
definition 1-3
locate using ups list -K 22-52
simple example of structure 16-2
product use statistics 27-9
product version 1-3
products account 11-1
products area 3-4
adding anew one 11-9
as setin UPD config 3-4
choosing location 11-4
defining during UPS bootstrap 13-2
for developmenttesting 11-9
for KITS 21-1
PROD_DIR keyword 27-6, 28-2
PROD_DIR_PREFIX keyword 27-6
structure of product root directory 15-6
unwind product tar filesinto 7-3
products for use only at FNAL 21-3
products for use only in U.S. 21-3
products requiring build 16-6
build script recommendations 15-3
inserting into template_product 18-4
pre-build checklist 19-1
proprietary products 21-3
on fnkits 4-8

Q

qualifiers
choosing whether to declare them 3-8
description 24-8
mixing required and optional 24-9
optional 24-9
overview 1-4
required 24-8
use in instance matching 26-4
QUALIFIERS keyword 22-48
description 27-6, 28-3, 29-2

R

reader comment solicitation INT-5

README file 7-1, 15-6, 19-1
sample 16-8

read-only variables 34-18
PRODUCTS 34-19
to be added in future 34-21
UPS_COMPILE 34-19

IDX-8

Index

UPS_EXTENDED 34-19
UPS_OPTIONS 34-19
UPS_ORIGIN 34-19
UPS_OS FLAVOR 34-19
UPS_PROD_DIR 34-19
UPS_PROD_FLAVOR 34-19
UPS_PROD_NAME 34-19
UPS_PROD_QUALIFIERS 34-19
UPS_PROD_VERSION 34-19
UPS THIS DB 34-19
UPS_UPS_DIR 34-20
UPS_VERBOSE 34-20
rebuilding product 16-7
registering products for KITS 21-3
RELEASE_NOTESfile 19-1
sample 16-9
remove a product 10-7, 22-79
unconfiguring 10-9
using UPP 10-8, 10-10
using ups undeclare command 10-8, 22-77
remove a product component
from distrib node 17-8
remove access to product 2-10, 22-11
remove product from distrib node 17-8
using template_product 18-8
retrieve file or dir from distribution node 10-15
retrieve product from distribution node 5-1
reversible functions 33-2
definition 34-1

S

searchlog.cgi script 20-13
sel ecting database for dependency install using UPD 5-3
selecting database for product install using UPD 5-2
setup command 1-1, 2-8, 22-5

associated environment variables 22-5

for chained instance 2-9

for current instance 2-9

for unchained instance 2-9

reference 22-3

specia options 2-9

test if setup would succeed 10-16, 22-33

usein troubleshooting problem installations 9-1, 10-17

-v option for use in troubleshooting 9-1, 10-17
setupEnv function

description 34-10
setupOptional function

description 34-10

use to define dependencies 35-4
setupRequired function

description 34-10

use to define dependencies 35-4
setups.[c]sh files 1-9

courtesy linksto 12-3

determine directory for 11-6

pointersto 11-6
SETUPS _DIR keyword 22-48, 30-2

description 27-6
sh

parse ups list output in a scipt 22-53

shell script products
inserting into template_product 18-4
pre-build checklist 19-1
simulate command 9-1, 10-17
source code
revision tracking 17-9
storagein CVS 17-9, 18-8
sourceCompileOpt function
description 34-11
sourceCompileReq function
description 34-11
sourceOptCheck function
description 34-12
sourceOptional function
description 34-13
sourceReqCheck function
description 34-13
sourceRequired function
description 34-14
src directory 15-7
stagel.sh file 13-1, 13-5
stage2.sh file 13-5
stanzas
tablefile 35-1
UPD config file 31-1
UPP subscription file 6-1, 32-2
START action 36-3
start script 14-3, 36-3
statistics
how to gather 11-10, 27-9
output 27-10
STATISTICS keyword 22-48, 30-2
as set by -L option 24-3
description 27-6, 28-3
detailed description of use 27-9
output from 27-10
STOP action 36-3
stop script 14-3, 36-3
subscription file for UPP
creating 6-1
reference 32-1
sample for product installation 6-3
SUFFIX keyword 20-9, 20-10
syntax of UPS/UPD commands 1-8, 25-1

T

tablefiles 1-6
compile script used with 37-1
detailed description 35-1
examples
action present for some instances only 35-8
execute one action or another 35-8
grouping 35-6
use of FLAVOR=ANY 35-6
with user-defined keywords 35-7
grouping information in 35-3
information storage format 27-2
instance matching within 26-3
keywords 27-2
locate using ups list -K 22-52
location specification 28-5
naming 35-1

Index

IDX-9

ordering elementsin 35-3
overwrite 10-14
read-only variables available for usein 34-18
recommendations to devel opers 35-2
sample for simple product 16-2, 16-4
stanzas 35-1
structure and contents 35-2
test if needs update 10-13
undoing reversible functions 33-2
-V option for debugging 24-9
TABLE_DIR keyword 22-48
description 27-6, 28-3
TABLE_FILE keyword 22-48, 27-10
description 27-6, 28-3
tailor a product instance 3-9, 22-69
TAILOR action 3-9, 22-67, 22-69, 36-3
tailor script 36-3
tar file creation
by upd addproduct 17-1, 23-7
using template_product 18-5
template_product 15-6, 17-2
adding build instructions 18-4
to top-level Makefile 18-4
checklist for building product 19-2
checklist for distributing to KITS 19-3
checklist for pre-build 19-1
cloning 18-2
customizing product tar file 18-5
downloading 18-2
editing top-level Makefile 18-3
inserting pre-built binaries 18-4
inserting product requiring build 18-4
inserting shell scripts 18-4
inserting your product 18-4
Makefile (top-level) 18-3
overview 18-1
removing product from distrib node 18-8
running a build procedure 18-4
temporary script
prevent deletion 24-9
test chain 1-4
test directory 15-7
testing products 18-5
checklist 19-2
third-party products 15-3
tolnfo directory 15-6
toman directory 15-6

U

umask 3-7
unAlias function
description 34-14
unchain
as action in table files 33-3
replace chain on distrib node using upd modproduct
17-7
use ups undeclare to remove chain 10-6, 22-77
UNCONFIGURE action 10-9, 22-75, 36-1
unconfigure script 36-1
UNCURRENT action 36-3
uncurrent script 36-3
undeclare a chain 10-6, 22-77

undeclare a product instance 10-7, 22-79
using UPP 10-8
using ups undeclare command 10-8
undoing chainsin table files 33-3
unflavored scripts 16-4
UNIX Product Distribution
overview 1-1
UNIX Product Pall 32-1
overview 1-1
UNIX Product Support
overview 1-1
unknown command handler
description 33-3
unProdDir function
description 34-14
unsetup command 2-10, 22-11
$SETUP_UPS variable 1-10
behavior with dependencies 22-11
reference 22-9
use of $SETUP_<PRODUCT> variable 22-6, 22-11
unsetupEnv function
description 34-15
unsetupOptional function
description 34-15
unsetupRequired function
description 34-16
UNWIND_ARCHIVE_FILE keyword 20-9, 20-10
description 27-6
use in updconfig 31-4
UNWIND_PROD_DIR keyword 3-4
description 27-7
use in updconfig 31-3
UNWIND_TABLE_DIR keyword
description 27-7
use in updconfig 31-4
UNWIND_UPS_DIR keyword
description 27-7
use in updconfig 31-3
UPD
command syntax 1-8
configuration file
info for installers 3-3
overriding default 3-4
reference 31-1
overview 1-1
procedural checklist for installation 5-3
upd addproduct command
adding table file product 17-5
adding typical product 17-3
chains 17-3, 23-7
detailed functions 20-2
internal processes 23-8
reference 23-3
response of distrib node 20-2
tar file creation 17-1, 23-7
upd cloneproduct command
reference 23-11
UPD commands
defaults 1-8
dependency matching 26-2
instance matching 26-1
interaction with distrib node 20-1
option flag grouping 25-2
option usage 25-4
order of command line elements 25-1

IDX-10

Index

specifiying version/chain 25-1
specifying multiple products 25-3
UPD configuration file 27-3
AFS issues 8-2
distrib node 20-9
KITS database pre and postdeclare actions 21-4
pre and postdeclare actions 20-10
examples 31-7
AFS31-10
distrib node config 31-10
distribution from fnkits 31-8
mulitple dbs and distrib nodes 31-9
for KITS database 21-2
info for installers 3-3
organization 31-1
overriding default 3-4, 31-1
overview 27-1
pre and postdeclare actions 31-5
product matching 31-2
reference 31-1
required |ocation definitions 31-3
sample location definitions 31-5
setting file permissions 11-3
stanzas 31-1
upd delproduct command 17-8
reference 23-13
upd depend command 4-5
reference 23-15
upd exist command 10-16
reference 23-17
upd fetch command 10-15
reference 23-19
upd get command
reference 23-23
upd install command 5-1
database selection 5-2
database selection for dependencies 5-3
detailed functions 20-2
-G (pass optionsto local declare) 5-2, 23-28
internal processes 23-29
procedural checklist for installation 5-3
reference 23-25
response of distrib node 20-2
summary of functionsit performs 3-1
syntax and commonly used options 5-1, 23-25
use to determine if product update needed 10-13
upd list command 4-1
reference 23-31
upd modproduct command 17-6, 17-7
reference 23-33
response of distrib node 20-2
upd move_archive file script 20-2
upd moved_ups _dir script 20-2
_UPD_OVERLAY keyword 16-7, 27-11
description 27-8
upd repproduct command
reference 23-39
upd update command 10-13, 10-14
reference 23-41
upd verify command
reference 23-45
upd.cgi script 20-2, 20-11
access restrictions 20-6
description 20-5

UPD_USERCODE_DB keyword 22-48
description 27-7
UPD_USERCODE_DIR keyword 3-4, 22-48, 30-2
description 27-7
on fnkits 21-2
update product
determine if update needed 10-13
using UPD 10-13
using UPP 10-13
updconfig file (see UPD configuration file)
updconfig.templatefile 31-1, 31-7
updusr.pm file 31-1
upgrading UPS installation 11-8
UpPP
automate upp command via cron 6-4
command syntax 6-4
monitor products on distribution node 4-3
notification of update needed 4-3, 10-13
overview 1-1
remove a product 10-8, 10-10
subscription file
creating 6-1
definition 4-3
sample for product installation 6-3
uses 32-1
upp command 4-3, 6-1
automation viacron 6-4
reference 23-47
syntax 4-4, 6-4
UPP subscription file
adding instructions 32-2
available functions 32-3
creating 6-1
definition 4-3
header description 32-1
instance matching 32-2
reference 32-1
sample 32-3
sample for product installation 6-3
stanza description 32-2
UPS
aliases defined 1-10
benefits of methodology 1-2
chains 1-4
command syntax and defaults 1-8
database 1-1
database directory specification 1-10
motivation for methodology 1-2
multiple database support 1-1
multiple product flavor support 1-3
multiple product version support 1-2, 1-3
overview 1-1
pointer to product root directory ($UPS_DIR) 1-10
product instance 1-4
product version 1-3
products distributed and managed by 1-3
upgrading your UPS installation 11-8
use without a database 1-7, 11-7
UPS commands
"-?" for usage information 2-1
"uncommands” as action keyword values 34-1
as ACTION keyword 33-1
database selection 26-1
defaults 1-8
dependency matching 26-2

Index

IDX-11

instance matching 26-1
keeping statistics on 11-10, 27-9
option flag grouping 25-2
option usage 25-4
order of command line elements 25-1
specifying multiple products 25-3
specifying version/chain 25-1

UPS configuration file 27-3
defining directory locationsin 11-6
for KITS database 21-1
for local database on fnkits 21-1
keywords used in 30-1
overview 27-1
reference 30-1
sample 30-2

ups configure command 3-9
reference 22-13

ups copy command 22-19
reference 22-17

UPS database
$PRODUCTS variable 1-10
$UPS_EXTRA_DIR variable for AFS 12-5
.updfiles subdirectory 1-6
.upsfiles subdirectory 1-6
checklist for creating a database 11-9
choosing single or multiple 11-6
configuring local to work with AFS 12-2
create a private database 11-9
create local database to work with AFS 12-2
declare a product instance to 3-5, 10-1
declaring productsinto local (not AFS) 12-4
definition 1-6
for development/testing 11-9
installing productsinto local (not AFS) 12-5
list al current productsin 2-4
list product information 2-2
listed in upsdb_list file 12-2
multiple (See multiple databases)
NFS mounted 12-1
permissions for files (distrib node) 20-7
providing access to multiple databases 12-2
setting up your own 5-3

with AFS 12-2

standard naming conventions for use with AFS 12-2

structure and contents 1-6
using AFS and local 5-3
using UPS without a database 1-7, 11-7
UPS database files 1-6
chain files 1-6, 29-1
check for inconsistencies 10-10
editing 10-11
keywords 27-1
overview 27-1
UPD configuration file 31-1
UPS configuration file 30-1
version files 1-6, 28-1
ups declare command 3-6, 10-3
as used internaly by upd install 5-2
reference 22-21
specifying database 3-5, 10-2
specifying table file path 3-5, 10-2
specifying ups directory 3-5, 10-2
syntax and common options
for declaring chain 10-4
for declaring instance 3-5, 7-4, 10-2

use during development 16-2
useto declare chain 10-4
use to declare instance 3-5, 10-1
ups depend command 2-7, 10-8, 22-79
reference 22-27
ups directory 3-5, 7-1, 10-2, 15-6, 27-11
description 15-6
locate using ups list -K 22-52
overwrite 10-14
test if needs update 10-13
UPS environment (See environment)
ups exist command 10-16, 22-33
reference 22-31
ups flavor command 2-1
-H option (specifies other flavor) 22-36
-l option (returns flavor table) 22-36
number options (specify OS level) 2-2
obtain flavor levels 2-2
obtain flavor table 2-2
reference 22-35
ups get command
reference 22-39
ups help command
reference 22-41
UPSinitialization file 11-6
ups installasroot command 12-6
ups list command 2-2, 3-6, 10-3, 10-5
condensed output 2-3, 22-46
default output fields 22-45
for db managers and product installers 27-1
formatted output 2-3, 22-45
-K option
for script-readable format 2-3, 22-46
keyword arguments 22-46
use to locate product files 22-52
keywords for -K option 2-3
list all current products 2-4
list al output fields 2-6
long listing 22-51
parse output
in perl 22-52
in sh script 22-53
reference 22-43
ups modify command
editing database files 10-11
reference 22-55
UPS product overlay (See overlays)
UPS product requirements (See dependencies)
UPS products
accessibility 10-16
announcement policies 17-10
bin directory 15-6

build and distribute using template_product 18-1

catman directory 15-7
compilation options 1-4
definition 1-3

directory structure 15-6
distribution restrictions 20-11
distribution via CD-ROM 20-14
doc directory 15-7
documentation storage 15-7
examples directory 15-7
filesand directories to include 19-1
hardcoded locations 15-3

html directory 15-7

IDX-12

Index

include directory 15-7
Info directory 15-7
INSTALL_NOTE file 15-6
installation methods, summary 3-1
installed with different name than on server 3-8
interruption during installation 3-8
lib directory 15-7
list on distribution node 4-1
man directory 15-7
news directory 15-7
overlays 16-7
permissions set at installation 3-7
proprietary products
on fnkits 4-8
qualifiers1-4
README file 15-6
specia categories, flagging 20-12
src directory 15-7
support levels 17-10
test directory 15-7
third-party 15-3
tolnfo directory 15-6
toman directory 15-6
ups directory 7-1, 15-6, 27-11
ups script 14-1
ups setup command (for troubleshooting) 9-1, 10-17
ups start command 14-2, 14-5
reference 22-59
usage in autostart 14-3
ups stop command 14-2
reference 22-63
usage in autostart 14-4
ups tailor command 3-9, 22-69
reference 22-67
ups touch command
reference 22-71
ups unconfigure command 10-7, 10-9, 22-79
reference 22-73
ups undeclare command
reference 22-77
remove chain 10-6, 22-77
remove product instance 10-7, 10-8, 22-79
syntax and common options
for chain removal 10-6
for product removal 10-8
-y and -Y optionsto remove root directory 10-8
ups verify command 10-10
reference 22-81
run by ups modify 10-11
usein troubleshooting problem installations 9-1, 10-17
ups.cgi script 20-2
description 20-5
UPS/UPD/UPP installation components 1-1
UPS_ARCHIVE_FILE keyword 20-9, 20-10
description 27-7
UPS_ARCHIVE_FILES keyword
use in updconfig 31-4
UPS_DB_VERSION keyword 30-2
description 27-7, 28-3, 29-2
UPS_DIR keyword 22-48, 27-11
as set by -U option 24-5
description 27-7, 28-3
UPS_EXTENDED variable 24-7

UPS_PROD_DIR keyword 3-4

description 27-7

use in updconfig 31-3
ups_shutdown script 14-1, 14-2, 14-5
ups_startup script 14-1, 14-2, 14-5
UPS_TABLE_DIR keyword

description 27-7

use in updconfig 31-3
UPS_TABLE_FILE keyword

description 27-8

use in updconfig 31-4
UPS_THIS DB keyword

description 27-7

use in updconfig 31-3
UPS_UPS_DIR keyword

description 27-8

use in updconfig 31-3
upsdb_list file 12-2

for AFS 12-5
upsdb_list variable 13-3
ups-decl.cgi script 20-2, 20-11

access restrictions 20-6

description 20-5
user comment solicitation INT-5
USER keyword

description 27-8
user-defined chains 1-4
user-defined commands 33-3
user-defined keywords 27-2
US-only products 21-3

Vv

variables (read-only) defined within UPS 34-18
vendor-supplied products

rebuilding 16-6
verbose command output (-v) 9-1, 10-17
version files 1-6, 22-79

and product removal 10-7

creating 28-1

description 28-1

examples 28-3

information included in 28-1

information storage format 28-1

instance matching within 26-3

location 28-1

overview 27-1

table location specification in 28-5
VERSION keyword 22-48

description 27-8, 28-3, 29-2
version of product 1-3
version specification in commands 25-1

w

web server
access file 20-11
log file on fnkits 21-7
on distrib node 20-1
prerequisites for cgi scripts 20-7

Index

IDX-13

writeCompileScript function
description 34-16

WWW
download products from 16-5

IDX-14 Index

