
Scripts You May Need to Provide with a Product 37-1

Chapter 37: Scripts You May Need to Provide

with a Product

In UPS v4, the functions supported for use in table file actions will not always
suffice for completing certain tasks, for instance configuration and tailoring.
You may still need to provide executable scripts, and include appropriate
functions in your table file to execute them. In this chapter we discuss some
scripts you may need to provide with your product.

Since these types of scripts generally get executed only once, speed isn’t
critical. We plan to provide more functions in later UPS releases so that scripts
will no longer be necessary for this purpose.

Note that these files can be binaries, but scripts are recommended.

37.1 configure and unconfigure

The configure executable must perform whatever steps are necessary to
install the product on a system, minus anything that requires direct interactive
input from the installer. In cases where the installer must supply some
information, you can choose to use a tailor script to collect data, and pass
the values to the configure script to use.

The unconfigure executable must undo everything that configure
does. UPS is “smart” enough that if one of the functions
sourceOptCheck, sourceOptional, sourceReqCheck, or
sourceRequired is used in the CONFIGURE action, when ups
unconfigure is run, UPS can find and source the
unconfigure.${UPS_SHELL} script.

Here is an example. Say a CONFIGURE action specifies:
ACTION=CONFIGURE

sourceOptional(${UPS_UPS_DIR}/configure.${UPS_SHELL},UPS_ENV
)

When you run the ups unconfigure command, UPS first looks for
ACTION=UNCONFIGURE, as usual. Failing to find it, UPS next looks for
ACTION=CONFIGURE. Upon encountering the sourceOptional
function, it searches for the file unconfigure.${UPS_SHELL} in the
same directory (${UPS_UPS_DIR}), and sources it.

37-2 Scripts You May Need to Provide with a Product

Sample Configure Script

The tex_files product has a good example of a configure/current
script (they are identical in this case):

 #!/bin/sh

 # "current" and "configure" for $TEX_FILES_DIR/ups/current

 case "$TEX_FILES_DIR" in

 /afs*)

 find $TEX_FILES_DIR/texmf/fonts/tmp -type d \

-exec fs setacl {} system:anyuser rlidkw \;

 ;;

 *)

 chmod -R 1777 $TEX_FILES_DIR/texmf/fonts/tmp

 ;;

 esac

The directory $TEX_FILES_DIR/texmf/fonts/tmp must be writable
by anybody using tex_files, in order that TeX can create the requested fonts
on-the-fly from font metadata files. (This way, rarely-used fonts can be
generated as the document is created, and they don’t need to be stored.) The
script evaluates $TEX_FILES_DIR. If it begins with /afs, it runs the
appropriate AFS command to make the tmp area world-writable. If not, then
it uses the standard UNIX chmod. UPS does not yet have “if-then-else”
capability within table files, so we can't write these things into actions. The
table file calls the scripts via the actions:

 action=configure

 prodDir()

 execute(${UPS_UPS_DIR}/configure,UPS_ENV)

 unprodDir()

 action=current

 prodDir()

 execute(${UPS_UPS_DIR}/current,UPS_ENV)

 unprodDir()

As described in section 34.5 Actions Called by Other Actions, one of the
identical scripts could have been eliminated and a common action could have
been used in this way:

action=configure

 exeActionRequired("common")

action=current

 exeActionRequired("common")

action=common

 proddir()

 execute(${UPS_UPS_DIR}/configure,UPS_ENV)

 unprodDir()

Scripts You May Need to Provide with a Product 37-3

Configure Scripts for Products with Hard-Coded Paths

As discussed in section 16.1.3 Third-Party Products Requiring a Hard-Coded
Path, many third-party products require a hard-coded path assigned when the
product is built. Most of these products come with configurable Makefiles
thereby allowing you to choose the path. The technical note TN0086 Use of
"/usr/local/products" now deprecated, on-line at
http://www.fnal.gov/docs/TN/TN0086/tn0086.html,
describes recommended techniques for implementing these products. The
third approach that it discusses involves using the configure script to
modify a trampoline executable. Please refer to TN0086 for information.

37.2 tailor

As discussed in section 4.6.2 Tailoring a Product, tailoring is the aspect of the
product implementation that requires input from the product installer (e.g., the
location of hardware devices for a software driver package, a specific area for
log files, which node should run the server, etc.). If your product requires any
interactive input from the installer, you will need to furnish a tailor
executable for this purpose. Generally tailor files are scripts that ask the
installer a series of questions, and write the answers to a <node>.dat file
which in turn gets read by the configure, current, and/or start
scripts.

Usually undoing the steps done via tailor require interactive input.
However, if your tailor steps are such that they can be undone via a script, go
ahead and provide an untailor script. When you run the ups
untailor command (available via the unknown command handler
discussed in section 34.4 The “Unknown Command” Handler), UPS will
execute untailor, the same way as described for unconfigure in
section 37.1 configure and unconfigure.

It still may be best to avoid including anything in tailor that needs to be
undone when the product is removed and that requires input from a person. If
tailor is used to collect information and pass it to the configure script
(recommended), then anything that needs to be undone can be addressed in
unconfigure.

For a sample tailor script, see $JUKE_DIR/ups/tailor.

37-4 Scripts You May Need to Provide with a Product

37.3 current and uncurrent

Most things that need to be done when a product instance is declared current
can be done directly via functions in the table file in a CURRENT action.
However, if the available functions prove to be insufficient for your product,
create a current script to perform the function(s).

Likewise, when a current chain is removed from a product instance, the
uncurrent script (if it exists) should undo all the things that were done in
current. It works the same way as UNCONFIGURE, described in section
37.1 configure and unconfigure.

A sample current script is shown in section 37.1 configure and
unconfigure.

37.4 start and stop

The start and stop files may be needed if your product needs to startup
automatically at boot time and run until system shutdown. Refer to Chapter
15: Automatic UPS Product Startup and Shutdown for information on this
topic. In the table file for this type of product you must include the actions
ACTION=START and ACTION=STOP. These actions must include all the
steps necessary to startup the product and shut it down. You may need to put
these steps in scripts and execute them from the table file. You can call the
scripts whatever you like, but we recommend start and stop for easy
recognition.

Sample start and stop Scripts

We’ll use scripts for juke v5_2 as examples.

The start script

#!/bin/sh

case "$0" in

/*) JUKE_DIR=`echo $0 | sed -e ‘s;/ups/start;;’`

 export JUKE_DIR

 PATH=$JUKE_DIR/bin:$PATH

 ;;

*) ;;

esac

Scripts You May Need to Provide with a Product 37-5

cd $JUKE_DIR/log

host=‘hostname‘

local="‘$JUKE_DIR/bin/juke show jukebox | grep $host | sed
-e ‘s/@.*//’`"

if ["$local" != ""]

then

 if [-f $JUKE_DIR/log/jukerpcd.$host.pid]

 then

 # it looks like one is running

 if kill -0 `cat
$JUKE_DIR/log/jukerpcd.$host.pid`

 then

 #daemon is already running, we’re done

 exit 0

 fi

 fi

 nohup $JUKE_DIR/bin/jukerpcd >> jukerpcd.$host.out
2>&1 </dev/null &

 echo $! > $JUKE_DIR/log/jukerpcd.$host.pid

 sleep 10 # wait for jukerpcd to wake up

 for i in $local

 do

 if ["`uname -s`" = "AIX"]

 then

 # AIX driver doesnt autoconfigure, so
configure it

 dev=`$JUKE_DIR/bin/juke show jukebox |

 grep $local |

 sed -e ‘s;.*/dev/;;’ -e ‘s/[
].*//’`

 mkdev -l $dev

 fi

 $JUKE_DIR/bin/juke online -j $i &

 done

fi

37-6 Scripts You May Need to Provide with a Product

The stop Script

#!/bin/sh

if ["" = "$JUKE_DIR"]

then

 JUKE_DIR=`echo $0 | sed -e ‘s;/ups/stop;;’`

 export JUKE_DIR

 PATH=$JUKE_DIR/bin:$PATH

fi

host=`hostname`

if [-f $JUKE_DIR/log/jukerpcd.$host.pid]

then

 kill -15 `cat $JUKE_DIR/log/jukerpcd.$host.pid`

 rm $JUKE_DIR/log/jukerpcd.$host.pid

fi

