Chapter 34: Actionsand ACTION Keyword

Values

Table filesand UPD configuration files often include stanzas which we call
actions. We describe actions in this chapter.

34.1 Overview of Actions

An action is a construction that identifies a UPS or user-defined operation via
the ACTION keyword (defined in section 28.4 List of Supported Keywords),
and lists functions to perform, in addition to any internal processes, when the
operation is executed. An action can be called by a UPS command, a
user-defined UPS-style command, or by another action. An action stanza has

the format:
ACT| ON=<VALUE>
<function_1>([<argunent_1>] [, <argument_2>] ...)
<function_2>([<argunent _1>] [, <argunent_2>] ...)

Asfor al keyword values, the VALUE is not case-sensitive. Nor are the
functions, although some arguments are. The supported ACTION keyword
valuesinclude:

* strings that correspond to UPS commands

* chains and “unchains’ (explained in section 34.3.2 “ Unchains’ as
Actions)

* user-defined strings handled by the Unknown Command Handler
The supported functions are listed in section 35.3 Function Descriptions.

Actions and ACTION Keyword Values 34-1

34.2 UPS Command Actions

34.2.1 UPS Commandsas Actions

Most commonly, the ACTION keyword value is a string that corresponds to a
UPS command. The string is usually the command itself (minusthe ups at
the front, if it is part of the command), e.g., SETUP, CONFIGURE,
DECLARE. The supported strings in this category include:

CONFIGURE and UNCONFIGURE
COPY

DECLARE and UNDECLARE
GET

MODIFY

SETUP and UNSETUP

START

STOP

TAILOR

The UPS commandsthat cannot have acorresponding actionin atablefileare:
ups flavor and ups hel p (because no table file can be associated with
them); ups depend, ups list,and ups verify (becausethey can
operate on more than one database); and ups exi st, ups nodi fy and
ups touch.

34.2.2 “Uncommands’ as Actions

Severa of the UPS commands have “uncommand” counterparts, namely

set up/unset up, ups decl ar e/lundecl ar e, ups

confi gurelunconfi gure. Generaly, if the“uncommand” is expected to
undo everything that the original command did, and only that, then including
an ACTION=<UNCOMMAND?> action in the table file is unnecessary.

Uncommands and Reversible Functions

If an “unaction” is not present, UPS will look for the corresponding
ACTION=<COMMAND>, and undo all the reversible functions that were
performed. In section 35.2 Reversible Functions we discuss reversible
functions. If the “uncommand” needs to do something other than the exact
reversal of the command, include an “unaction” for it (i.e.,
ACTION=<UNCOMMAND>) and specify the functions to execute.

34-2 Actionsand ACTION Keyword Values

Thisworksbothways. Say the origina command is“uncommand” (e.g., ups
undecl ar e), and you have included ACTION=<UNCOMMAND> but not
ACTION=<COMMAND?> in the table file. Then when you run *“command”,
UPS will attempt to reverse all the functions listed under
ACTION=<UNCOMMAND>.

Uncommands and Script Execution

For the functions sour ceOpt Check, sourceOpti onal,

sour ceReqCheck, and sour ceRequi r ed, the “uncommand” will
execute an “unscript” in asimilar way. You do not have to specify an
“unaction” in the table file as long as the scripts to source are in the same
directory and have matching script and “unscript” filenames (i.e.,

<scri ptnane> and un<scri pt name>). Thisalsoworksboth ways, as
discussed above.

Hereisan example. Say a CONFIGURE action specifies:
ACTI ON=CONFI GURE

sourceOptional (${ UPS_UPS DI R}/ configure. ${ UPS _SHELL}, UPS_ENV
)
When you runthe ups unconfi gure command, UPSfirst looks for
ACTION=UNCONFIGURE, asusua. Failingto findit, UPS next looks for
ACTION=CONFIGURE. Upon encountering the sour ceOpt i onal
function and seeing that it sourcesthe confi gure. ${ UPS_SHELL}
script, UPS searches for the file unconfi gure. ${ UPS SHELL} inthe
same directory (${ UPS_UPS DI R}), and sourcesit.

34.3 Chain Actions

34.3.1 ChainsasKeyword Values

Chain names are allowable as ACTION keyword values. Thisincludes any
predefined chain name (as listed in section 2.3.5 Chains: CURRENT, TEST,
DEVELOPMENT, OLD, NEW) or any user-defined chain name (e.g.,

MY _CHAIN). Chain actions are executed when a chain of the corresponding
name is declared to a product instance viathe ups decl ar e command.
For example, if you declare an instance ascurrent, ups decl are -c looks
for ACTION=CURRENT.

Sometimes a UPS command executes more than one action. For example, the
ups decl are -c¢ command executes both the CURRENT and DECLARE
actions, if they are present.

Actions and ACTION Keyword Values 34-3

34.3.2 “Unchains’ asActions

Similarly, when achain is removed from an instance (which can happen with
either ups decl are or ups undecl ar e), UPSlooksfor the
corresponding chain name preceded by the “UN” prefix (e.g., UNCURRENT,
UNTEST, UNMY _CHAIN).

The relationship between a chain action and its corresponding “unchain”
action (e.g., CURRENT and UNCURRENT) is the same as between
commands and “uncommands’, as described in section 34.2.2 * Uncommands’
as Actions. For example, if an “unchain” action is sought but not found, UPS
will then look for the corresponding ACTION=<CHAIN> and undo al the
reversible functions listed there.

34.4 The“Unknown Command” Handler

The unknown command handler effectively alows you to define a UPS-like
“unknown” command for use with a product. To define one, include in the
product’s table file an ACTION with a unique value of your choosing, e.g.,
ACTION=XYZ. The corresponding command will be ups xyz. Theaction
should contain one or more supported functions (listed in section 35.3
Function Descriptions), as usual. Hereisan example of what the action may
look like:
ACTI ON=XYZ
envSet (VAR ABLE, val ue)
sour ceRequi red(SCRI PT. csh, UPS_ENV_FLAG)

Thecommand ups Xxyz isnow availablefor you to use. Enough
information must of course be provided on the command line to locate the
table file containing the action, e.g.,:

% ups xyz [<options>] <product> [<version>]
When it is executed, the unknown command handler locates ACTION=XYZ in
the table file and executes the functions listed under it.

User-defined ACTION keyword values (e.g., XY Z) do not need to start with
underscore (_), as contrasted with user-defined keywords (see section 28.2
Keywords:. Information Sorage Format).

Examples

An example of the use of the unknown command handler can be found in the
table file for the product xemacsv20 4.

ACTI ON=CONFI GURE

34-4 Actionsand ACTION Keyword Values

Execute(echo "Do a 'ups blessmail xemacs’ as root to
make mail work.", NO UPS _ENV)

ACTI ON=BLESSMAI L
Execute(chgrp mail ${UPS _PROD DIR}/Iib/*/*/novemail,
NO_UPS_ENV)
Execut e(chnod 2755 ${UPS _PROD DI R}/ Ilib/*/*/nmovemail ,
NO_UPS_ENV)
When the product instance is configured (viathefirst ups decl are, or
manually viathe ups confi gure command),an echo command prints
to screen an instruction to run the user-defined (“unknown”) command ups
bl essmai | . Thiscommand is handled by the unknown command handler.
It finds ACTION=BLESSMAIL and executes the functions associated with it.

UPD’stable file includes (at least) two actions using the unknown command
handler:

action = install asroot
Execut e(${ UPS_UPS_DI R}/ set upaut oupp | ocal node,
UPS_ENV)
action = install prodserver
Execut e(${ UPS_UPS_DI R}/ set upaut oupp product node,
UPS_ENV)

If you'reinstalling on alocal node, you'drun ups i nstal | asroot upd
after installing UPD; if you'reinstalling it on aserver node, you'd run ups
i nstal |l prodserver upd instead.

34.5 Actions Called by Other Actions

As mentioned in section 34.1 Overview of Actions, one action can execute
another in the same file. The called action must be assigned a unigue value of
your choosing, e.g., ACTION=XY Z, and the calling action (or actions) must
include one of the following functions (shown for ACTION=XY 2):

exeActi onRequi red("xyz")
or
exeActionOptional ("xyz")

These functions are described in sections 35.3.14 exeActionRequired and
35.3.13 exeActionOptional, respectively.

Thistechniqueis useful in cases where two different UPS operations require
overlapping functionality. For example, you may want one or more identical
functions to be performed when a product gets configured and when it gets
declared as current. The following example shows how to arrange this:

action = configure

Actions and ACTION Keyword Values 34-5

action

action

<functions for configure>

exeAct i onRequi red(" common")

= current

<functions for current>

exeAct i onRequi red(" common")

= conmmon

<functions common to both configure and current>

Actionsand ACTION Keyword Values

