
Overview of UPS, UPD and UPP v4 2-1

Chapter 2: Overview of UPS, UPD and UPP v4

UPS, UPD and UPP are the utilities provided by Fermilab’s Computing
Division for managing and standardizing software product development,
distribution, support and access. This overview chapter describes these
utilities briefly, and discusses the reasons for which this particular product
methodology was chosen and developed. The chapter also describes:

• features of products maintained and distributed under this system (called
UPS products)

• UPS databases

• the UPS software environment

2.1 Introduction to UPS, UPD and UPP

UPS (UNIX Product Support) is a software support toolkit developed at
Fermilab for the management of software products on local systems by the
system administrators and users. It was also designed to facilitate the product
distribution and configuration management tasks of the product providers. The
three principal user benefits are:

• a uniform interface for accessing all products on a UNIX (or UNIX-like,
e.g., Cygwin) system via the setup command

• unified and coordinated support of in-house and vendor-supplied software
across all the supported UNIX operating systems

• the capacity for running multiple concurrent versions of products on the
same system, with a standard, simple version-selection mechanism

UPD (UNIX Product Distribution) is a companion product to UPS, and
provides the functionality for uploading/downloading products between local
systems and product distribution servers.

UPP (UNIX Product Poll) is a layer on top of UPD that allows a client to
request notification of changes in a distribution node database and to download
pre-specified products. UPP can be automated. This is a useful tool for
keeping abreast of changes/enhancements to your favorite products.

A UPS/UPD/UPP installation usually has several parts:

2-2 Overview of UPS, UPD and UPP v4

• one or more databases; a UPS database is a directory which functions as a
central repository of information about products and contains pointers to
products.

• a UPS database configuration file which contains system-specific
information that customizes the UPS installation on a node or cluster

• a UPD configuration file that tells UPD which database to use to declare
a product, in what directories to unwind the product and its related files,
what naming conventions to use for various metadata files, and other
information.

• the UPS, UPD and UPP executables which manipulate and view the
database(s) on client and server nodes

• a UPP subscription file that lists product instances you are interested in
tracking and a list of commands to perform when new instances appear
(notify by email, install the instance, etc.).

• an entry in the crontab file to run UPP at some periodic interval.

2.2 Motivation for the UPS Methodology

Why has Fermilab developed and implemented the UPS product support
methodology? The principal reason is to provide self-contained products.
Each release of a self-contained product can be installed and accessed
independently of other releases. There are two main advantages to this, which
are especially important for applications such as real-time data acquisition:

The UPS methodology also provides tracking. A glance at the UPS database
tells you what version of a product you’re running; you don’t need to keep
track of it elsewhere or risk forgetting. You can also easily tell if different
machines are running the same version of a product.

All users of UNIX utilities and software products on a system running UPS
will appreciate these additional features:

• Multiple versions of a software product can be made available
concurrently. This is useful in many situations, especially when some
products depend on particular versions of others for compiling or
running. Multiple concurrent versions also makes possible the second
advantage:

• You can back out of a new software release completely and assuredly
if something goes wrong, and immediately start up a previous
tried-and-true release.

Overview of UPS, UPD and UPP v4 2-3

• capability for supporting a cluster of UNIX systems from different
vendors fitted with common software products (and optionally a common
products disk)

• an easy and consistent method of accessing a variety of software products

• wider availability of supported software

• linking of dependent products in such a way that when a product is made
accessible for use, any products that it relies upon for proper functioning
are also automatically made accessible

Further advantages that product installers, system administrators and product
providers will encounter include:

• a rich set of commands for installing and maintaining products

• a single product development/distribution methodology and set of
standards

• a wider audience available to test new products

2.3 UPS Products

Products distributed and managed by UPS on a distribution or user node are
called UPS products. Typically, UPS products on a system are declared in a
UPS database on that system. UPS products can be maintained on different
disks, and/or in different directories. Each product in a UPS database is
managed via a set of files that provide product management information to
UPS, e.g., the location of each copy of the product, what its status is (e.g.,
appropriate for general use, for testing, for development), what needs to be
done when the product is installed or accessed, and so on.

UPS products are generally self-contained and portable, laid out in a directory
structure under what we call a product root directory. The structure of a
product’s directory tree is not dictated by UPS, but generally it includes (at
least) areas for the executables (bin), for test scripts (test), and for
documentation (e.g., man, catman, docs, html).

2.3.1 Versions

UPS supports multiple concurrent versions of software products. Each version
of a product is installed and accessed independently of other versions. When a
new version of a product becomes available, an existing directory tree is not
replaced with another; rather, a branch is added for the new version. (See the
diagram in section 2.4.2 UPS Database Structure.)

2-4 Overview of UPS, UPD and UPP v4

2.3.2 Flavors

Many programs require separate compilations for each of the different UNIX
operating systems. UPS allows you to maintain a separate directory tree for
each compilation (and related files) of the same product. To distinguish
between different OS-dependent compilations, we use the term flavor. This
additional term allows us to maintain the same product name and version
across the different operating systems and OS versions, which is desirable
since the same program source files are generally used in the separate
compilations.

Several different copies of a product may exist on a given system. When you
use UPS commands to manipulate or use a product, the system needs to have
enough information to select the appropriate one. All UPS commands support
a -f option1 allowing you to specify flavor.

The flavor of a particular product compilation as declared in a UPS
distribution database may or may not indicate the version of the OS for which
it was compiled. The standard we have adopted for flavors in the KITS
distribution database on the Computing Division’s central product distribution
node fnkits.fnal.gov is:

• For products which have no compiled programs, and are thus operating
system-independent, a special flavor of NULL is used.

• Flavored products are declared with the full flavor specification of the OS
on which they are built.

On user systems the flavor of a product may be declared differently. For
example, products which can run on multiple releases of a single OS are
sometimes declared on user systems with the UNIX OS name only. For
example, a product that runs on all IRIX releases but is declared in KITS as
IRIX+6.5 may be declared on a user system with the flavor IRIX. (This
practice is declining. It is discouraged because it is difficult to maintain and
can cause setup problems when the product is a dependent product of another.
Dependent products are defined in section 2.3.6 Product Dependencies.)

2.3.3 Qualifiers

The product developer may include information about options used at
compilation time (e.g., debug or optimized) or other qualifying
information for easy identification of special compilations. This information is
declared in the form of qualifiers in a distribution database. When a product is
declared to UPS, the installer has the choice of declaring these qualifiers or
omitting them in the declaration.

1. There are also the number options -0 through -3 which can be used in place of
-f; -H can be used to run a UPD command as if the local flavor were as specified.
See Chapter 25: Generic Command Option Descriptions for descriptions.

Overview of UPS, UPD and UPP v4 2-5

Declaring the qualifiers allows full identification of the product compilation on
your system. The drawback is that to access a product compilation declared
with one or more qualifiers, a user must specify the qualifier(s) when accessing
that compilation.

No standard set of qualifiers has been defined; the naming of qualifiers is at the
discretion of the product provider, and thus may vary from product to product.

2.3.4 Product Instances

Each installed copy of a product that is declared to a UPS database is called an
instance of the product. Within a database, a product instance is distinguished
by a unique combination of product name, version, flavor, and qualifiers. In
the case of multiple databases, the database specification is often also needed
to distinguish an instance because identical instances can be maintained in
different databases. The concept of chains, discussed in section 2.3.5, allows
users to easily access the appropriate instance of a product according to their
needs without having to remember its version number and other details.

2.3.5 Chains

We mentioned earlier that UPS supports multiple versions of software products
on a machine. End users do not find it convenient to specify product version
numbers each time they setup a product. This is especially true if product
setups are needed at login. Most users want to run the latest, tested, approved
version of products without having to keep track of the version numbers.

To allow users to specify the version of a product according to its status rather
than by its version number, UPS supports chains to product versions. A chain
can be thought of as an alias for a particular product instance. It indirectly
“attaches” a chain name to a product instance, thereby tagging the product
instance according to its status.

Five standard chains, have been defined for use: current, new, test, old, and
development.

2-6 Overview of UPS, UPD and UPP v4

Chain Names, Options, and Usage

Additional chains may be defined by developers and installers and other users.
The command option -g is provided for this purpose. For an example of
how it’s used, see section 11.2 Declare a Chain.

2.3.6 Product Dependencies

Many UPS products require that other UPS products be installed, declared and
setup for proper functioning or for use of special features. These other
products are referred to as dependencies. A dependency is generally an
independent product that is maintained in its own individual product root
directory. Non-UPS products are sometimes declared as dependencies as well;
for instance, gcc is not installed under UPS on some machines, but is a
dependency of some UPS products. End users don’t normally need to know
what dependencies a particular product has, as long as the product runs without
problems.

We distinguish two categories of dependencies: those which are required for
the main product to function, and optional ones which generally enable
nonessential features of the main product.

The coupling of products with their dependencies facilitates product setup
(setup is described in section 3.4 Setting up a Product). You need only setup a
single UPS product to access any and all of the products listed as dependencies
for that product.

Multiple levels of dependencies are possible. As an example, the mail product
exmh has several “first level” dependencies, one of which is www. www has
dependencies of its own, which in turn may have dependencies, and so on.
These are all referred to as “lower level” dependencies of exmh.

Chain Option Usage

current -c default instance recommended for general use

new -n tested instance that is not yet current

test -t instance installed for testing

development -d instance under development

old -o older instance that was previously current

Overview of UPS, UPD and UPP v4 2-7

UPS product dependencies can exist across databases. For this to work, the
databases in which they are declared must all be included in $PRODUCTS, or
in a database list specified on the command line.

2.3.7 Product Overlays

An additional class of required product is supported by UPD, called an
overlaid product. An overlaid product gets distributed and maintained in the
product root directory of its main product. For example, the overlaid products
cern_bin, cern_ups, cern_lib, etc., all reside in the product root directory for
the main product cern. A patch is another good example of the use of overlaid
products. The set of products overlaid on a main product is collectively
referred to as the overlay. An overlaid product is not precluded from being a
dependency of other UPS products.

2.4 UPS Database Overview

The information UPS needs for managing products is maintained in a database.
A UPS database is a directory tree which contains a subdirectory for each
product declared to the database, the subdirectory having the same name as the
product. It also usually contains the hidden subdirectories .upsfiles with
UPS database configuration information, and .updfiles with UPD
configuration information.

Within each product-specific directory under the UPS database directory, a set
of ASCII files collectively contains the UPS management information for the
product on that system. We call these files UPS database files.

UPS commands refer to the database directory via the UPS environment
variable $PRODUCTS described in section 2.7.2, or the -z
<databaseList> option. $PRODUCTS can be set to point to one or to
several directories, thus allowing support for multiple databases. This allows
users to maintain one or more private databases in addition to or instead of the
common one(s).

A note about what used to be called build dependencies: These don’t exist
as such as of UPS v4. The qualifier “BUILD” or “build” now provides
essentially the same function as the old build dependencies. There is an
example in the reference section 23.1 setup that illustrates the use of this
qualifier.

2-8 Overview of UPS, UPD and UPP v4

2.4.1 UPS Database Files

There are two types of UPS database files for each product: version and chain
files.

• Version files tell UPS where to find all the files associated with a
particular version of a product on the local system, and contain some
other system-specific information. They are generally named according
to the scheme vx_y.version, e.g., v1_0.version. These are
described in Chapter 29: Version Files.

• Chain files are optional and contain pointers to version files, thus
providing convenient access to particular product versions on the local
system. They are generally named according to the scheme
chainname.chain, e.g., current.chain. These are described in
Chapter 30: Chain Files.

Another file that strictly speaking is not a database file, but is also used in
product management is a table file. Table files contain information which is
independent of any local installation and which is specific to one or more
particular instances of the product. For example, table files tell UPS what
needs to be done to configure a product or to make it accessible for use. Table
files are provided by the product developer when needed. Not all products
have table files. And conversely, some products consist only of a table file.
Table files are described in Chapter 36: Table Files.

Whereas version and chain files are constrained to reside under the UPS
database, table files can reside anywhere. Table files are usually kept either in
the database or within the product instance’s root directory structure. Table file
paths are indicated in version files, and they are thereby accessible to UPS
regardless of location.

Overview of UPS, UPD and UPP v4 2-9

2.4.2 UPS Database Structure

2.5 Using UPS Without a Database

It bears mentioning that UPS can be installed on a machine to manage products
without a UPS database, albeit in a limited way. (Except where noted, this
manual is written with the assumption that UPS is used with a database.) In
the absence of a database, there are no database files and every UPS/UPD
command must include all of the information that normally would have been
read from a database. In particular, all commands require specification of the
table file name, and usually its location. Functionality requiring or operating
on a UPS database is not supported when UPS is implemented in this way.

This flexibility is provided primarily for off-site users who for one reason or
another do not want to maintain a UPS database on their local system. Product
developers may also work in this type of environment, especially if they’re
using CVS or another code management product; this is described in section
16.2.2 CVS under 16.2 Tools for Developing and/or Packaging Products.

2-10 Overview of UPS, UPD and UPP v4

2.6 UPS and UPD Commands

Please see Part VI UPS and UPD Command Reference of this manual for
complete information on UPS and UPD commands. To get you started, we
describe briefly here the command syntax and defaults used.

2.6.1 Syntax

Most UPS and UPD commands are of the form ups <command> or upd
<command> (the exceptions are setup and unsetup), and take a
variety of command line options and arguments. Multiple arguments must be
separated by colons (:). The standard syntax is:

% ups <command> [<options>] <product> [<version>]

For example:

% ups list -f IRIX+6:OSF1+V3 xemacs v20_4

The first occurring unflagged argument on the line after the command is
generally interpreted as the product name1, and the next (if any) is interpreted
as the version. With that limitation, the name, version and options can occur
anywhere on the command line.

2.6.2 Defaults

If no database is given, UPS uses $PRODUCTS to determine the database. If
no instance-identifying options or version are given, UPS/UPD operates on the
instance declared as current for the flavor of the machine on which the
command is issued (to the highest specification level possible). If there is no
instance declared as current or if the current instance has any qualifiers, then
the default instance matching will fail.

For UPD commands, if no product distribution node is specified, UPD uses the
central Computing Division product server fnkits.fnal.gov as the default. (The
product distribution database on this node is known as KITS.)

1. An exception is the <componentList> element in the upd update
command, documented in section 24.13 upd update.

Overview of UPS, UPD and UPP v4 2-11

2.7 The UPS Environment

2.7.1 Initializing the UPS Environment

In order to access and use UPS products or manipulate a UPS database, your
environment must be initialized to make the UPS commands available to you.

Systems using Fermi UNIX Environment

Many on-site Fermilab systems, and some off-site nodes as well, have been
configured with the Fermi UNIX Environment (FUE).1 If your system runs
FUE, your UPS environment gets initialized automatically when you log in.

The UPS initialization does not carry over to any scripts which either create a
new login process or invoke a shell from the “other” shell family. If such a
script needs to setup and run UPS products from that new process, you need to
include a line in the script which sources the appropriate setups.[c]sh
file, as described below.

Systems NOT using Fermi UNIX Environment

If your system does not run FUE, you will need to initialize your UPS
environment yourself unless your system administrator has taken care of this.
The UPS initialization is accomplished by sourcing a UPS-provided script;
namely, one of the following (depending on your login shell):

Bourne shell family setups.sh

C shell family setups.csh

It must be sourced from the directory where the UPS setup files have been
installed on your system. Virtually all supported systems on-site provide
“courtesy links” in /usr/local/etc so that you don’t need to know
exactly where the setups.[c]sh files actually reside2. If the
setups.[c]sh files are not in /usr/local/etc and your system
doesn’t maintain these courtesy links, you will need to ask your system
administrator or UPS database maintainer where to find these files.

You can either source the setups.[c]sh scripts manually (for occasional
use), or you can add the following to your .[c]shrc file so that UPS gets
initialized every time you log in:

Bourne shell family . /path/to/setups.sh

1. FUE was updated in the fall of 1999. It requires UPS/UPD v4_0 or higher and systools
v6_0 or higher plus dependencies.
2. There are some exceptions; including the system where UPS development takes place.

2-12 Overview of UPS, UPD and UPP v4

C shell family source /path/to/setups.csh

You also need to include this line in any other scripts which setup and invoke
UPS products, once per login session and any time a shell from the other shell
family is invoked.

Overview of UPS, UPD and UPP v4 2-13

2.7.2 Changes UPS Makes to your Environment

The following environment variables get set/modified by setups.[c]sh:

$PRODUCTS If only one UPS database is defined, this points to it; if
two or more are defined, this variable can be set as the
colon-separated1 list of UPS databases. The order of the
databases in this list reflects the order of precedence for
accessing products.

$UPS_DIR This points to the top level directory (called the product
root directory) of the active instance of UPS.

$UPS_SHELL Set to sh or csh, depending on shell family in use.

$PATH Modified to include $UPS_DIR/bin.

$SETUP_UPS a string containing all the information that the
unsetup command needs in order to identify the
active instance of UPS (e.g., ups v4_5_2 -f
SunOS+5 -z /path/to/db)

2.7.3 Changes UPD Makes to your Environment

The following environment variables get set/modified by the setup upd
command.

$FTP_PASSIVE allows UPD to work behind certain firewalls

$SETUP_UPD a string containing all the information that the
unsetup command needs in order to identify the
active instance of UPD

$PATH modified to include $UPD_DIR/bin.

$UPD_USERCODE_DIR

directory containing UPD configuration

$UPD_USERCODE_DB

database containing UPD configuration

1. Using whitespace as a separator in place of colons is allowed in $PRODUCTS for back-
wards compatibility. However, colons are recommended. Using colons is more consistent
with the new command format that requires multiple option arguments to be separated on
the command line with colons.

2-14 Overview of UPS, UPD and UPP v4

