
Making Products Available For Distribution 18-1

Chapter 18: Making Products Available For

Distribution

This chapter describes the processes of adding, updating, deleting and
“cloning” product instances or components1 on a product distribution system.
Information on creating tar files, using Fermilab CVS repositories and
announcing products is also provided.

18.1 Product Distribution Overview

A set of UPD commands has been developed for adding, updating and deleting
products on a distribution node. They use the central Fermilab product
distribution node fnkits.fnal.gov as the default distribution node, and declare
products in the KITS database. The commands can be used to distribute
products to any properly configured product server.

These UPD commands include:

upd addproduct adds a product instance to a product distribution
database

upd cloneproduct creates a new product instance on a distribution
node by copying one that is already there and
changing one or more of its identifying elements

upd delproduct deletes a product declaration from a distribution
database; it also removes any associated tar file,
table file and/or ups directory

upd modproduct modifies a product instance that already exists in
a distribution database; it allows you to replace a
table file or ups directory, or to add or change
chain information for the product

upd repproduct is equivalent to a upd delproduct
followed by a upd addproduct; it can be
used only when the replacement product
instance has the same set of identifiers as the one
destined for removal

1. “Components” are defined as table files and ups directories.

18-2 Making Products Available For Distribution

These commands are fully described in Chapter 24: UPD/UPP Command
Reference.

Before preparing to distribute a product, you should verify that it is complete,
tested, and UPS-compliant. It is optional to create a tar file of your product
prior to running upd addproduct, as discussed in section 18.2 Creating
Product Tar Files. Keep in mind that the UPD configuration on your target
distribution node determines the locations in which products get installed and
declared on that node, and where their auxiliary files/directories get stored.
The configuration on the distribution node may bear no resemblance to that of
your local development system, or to that of an end user node. Once your
product has been added to a distribution node, you need to make the
appropriate announcements regarding product availability (see section 18.10
Product Announcement Policies).

18.2 Creating Product Tar Files

You can choose whether to make your own tar file before adding your product
to a distribution node or to let UPD make it for you. The advantage of making
it yourself is that you have control over its contents.

Note that it is not necessary that the product instance’s table file or ups
directory be included in the product root directory or, consequently, in the tar
file. Some products may not have one, the other, or both of these components.
On the other hand, other products (e.g., bundled products) may consist only of
a table file, in which case no tar file is needed. If these components exist and
are located outside of the product root directory, their location must be
specified in one of two ways when adding the product to the distribution node:

• on the upd addproduct command line

• in a UPS database declaration on your development machine (database
must be listed in $PRODUCTS)

When creating a tar file of a product using the tar command, perform the
operation from the product root directory. This allows you to use simple
relative path names to specify the files to include in the tar file. Use an
absolute pathname (preferably to a temporary directory) to specify where to
put the tar file. Do not use absolute pathnames to specify the files to include in
the tar file.

Do not use the product root directory as the destination for the created tar file;
it causes the tar file to try to include itself and to grow infinitely large.

The following steps illustrate the conventions for packing up a tar file for a
UPS product called fred in such a way that (a) the tar file contains a relative
path to the product root directory, and (b) the tar file is put in an appropriate
temporary directory:

Making Products Available For Distribution 18-3

% setup [-d] fred

% cd $FRED_DIR

% tar cvf /tmp/fred_IRIX+5_v1_0.tar .

This creates a tar file called /tmp/fred_IRIX+5_v1_0.tar with all
pathnames relative to the current directory ($FRED_DIR).

You should not replace the trailing dot in the example above with
$FRED_DIR because that would force the tar file to contain an absolute path
to the $FRED_DIR as set on your system, instead of a relative path to the
$FRED_DIR on the target system where the tar file will be unwound.

Using template_product (described in Chapter 19: Using template_product
to Build and Distribute UPS Products) allows you to customize the contents of
your tar file. See section 19.8 Customizing your Tar File.

18.3 Adding a Product

Use the upd addproduct command to add a new product instance to a
distribution server. If no host name is specified with the -h option, UPD
uses the fnkits.fnal.gov host as the default. The required command line
arguments differ depending on what components the product has and whether
it’s been declared to a local UPS database and/or archived with tar. Refer to
the reference section 24.1 upd addproduct for the full command syntax and
options for these different situations.

A few notes:

• When using upd addproduct -h <host>, use the full hostname
(i.e., hostname.fnal.gov rather than just hostname) to prevent problems
when people download the product to off-site user nodes.

• The -P option is available to prevent UPS from searching in a local
database for the product instance. If you use it, you must specify
sufficient information on the command line so that UPS/UPD can identify
and locate all the product components.

• Chain information remains identical for the added product instance on the
local and distribution nodes under most circumstances. If -P is used,
local chain information is ignored, but can be set on the distribution node.
You can use upd modproduct afterwards to change the chain.

• If the product is not declared to a local database, you must include -m
<tableFileName> on the command line. You must also include -M
<tableFileDir> if the table file is not in the current directory.

18-4 Making Products Available For Distribution

18.3.1 Product Categories Defined for KITS

The central Fermilab Computing Division product distribution database
KITS, located on the server fnkits.fnal.gov, recognizes several different
categories of product:

default regular products added to the KITS database for
distribution to any on-site or registered off-site node.1

FermiTools locally-developed and supported software packages that
we make available to the public

proprietary products for which Fermilab has a limited number of
licenses

fnalonly products accessible only to the fnal.gov domain

usonly US-only (United States only) products are accessible
only to U.S. government (.gov) and military (.mil)
domains

Most products fall into the default category, and can be added normally. For
the other categories, you must first fill out the Special UPD Product
Registration form (at
http://fnkits.fnal.gov/specialprod.html) indicating which
category of product it is, and submit the form. Then when you receive an
email message saying that your product has been registered as a special
product, go ahead and add it to fnkits. Do not use any special options (i.e., do
not use -O "<options>") with upd addproduct; your product will
automatically be configured to handle the special requirements according to
your selection on the form.

18.3.2 Examples

Example 1

We have a product instance with a table file and a ups directory (in addition
to all the product files) under the product root directory. The table file is in the
ups directory. The product (we’ll call it foo version v1_0), was developed
for the flavor SunOS+5. The tar file has not been made ahead of time. In order
for UPD to make the tar file for us, the product instance must be declared to a
local UPS database listed in $PRODUCTS.

To add the product to KITS, the command can be entered from a SunOS+5.x
machine as:

1. See the Product Distribution Platform Registration Request form at
http://www.fnal.gov/cd/forms/upd_registration.html
.

Making Products Available For Distribution 18-5

% upd addproduct foo v1_0 -2

Notice we’ve used the option -2 which is equivalent in this case to -f
SunOS+5. All of the other necessary information gets picked up from the
local UPS declaration.

If we choose to ignore the local declaration via the -P option, we must
supply the necessary information in the command:

% upd addproduct foo v1_0 -2 -P -r /path/to/prod/root/dir \
-m v1_0.table -M /path/to/prod/root/dir/ups \
-U /path/to/prod/root/dir/ups

Example 2

Let’s use the same product as in Example 1, but assume that a tar file already
exists. The pre-made tar file includes the entire structure under the product root
directory. The tar file is located on our local machine in
/tmp/foo_v1_0_SunOS+5.tar. We want to add it to fnkits and declare
it to the KITS database with the full development machine flavor
specification, no qualifiers, and no chain.

Assuming this product instance was declared to a local UPS database before
the tar file was created, we use the command:

% upd addproduct foo v1_0 -2 -T /tmp/foo_v1_0_SunOS+5.tar

UPD can determine where to find the table file and ups directory on the
local node by querying the local UPS declaration. However, if the product
instance had not been declared to any local UPS database, we would need to
specify the table file name and location. We would also need to specify the
ups directory if it were other than ${UPS_PROD_DIR}/ups1, which is
the default location. A sample command that would work for this case is:

% upd addproduct foo v1_0 -2 -T /tmp/foo_v1_0_SunOS+5.tar \
-m foo.table -M ups

If the command succeeds, UPD returns a message indicating that the product
was successfully transferred and declared. After the product is added, we can
run the upd list -a command to see the declaration in KITS:

% upd list -a foo v1_0

DATABASE=/ftp/upsdbusr

 Product=foo Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain=""

If we had wanted to declare the product in KITS for several flavors
(assuming flavor-independence in the product), we could have specified them
in the command as follows:

1. ${UPS_PROD_DIR} is one of a set of local UPS read-only variables listed in section
35.6 Local Read-Only Variables Available to Functions. It takes the same value as
$<PRODUCT>_DIR, the product root directory.

18-6 Making Products Available For Distribution

% upd addproduct foo v1_0 -f IRIX+5:SunOS+5:OSF1_v3 \
-T /tmp/foo_v1_0_ANY.tar -m foo.table -M ups

Example 3

This next product, footwo v1_0, has no table file (thus no -m or -M
needed), and it has a ups directory external to the product root directory. We
want to declare it to the (fictional) node dist_node.fnal.gov with the test chain
(-t), the flavor NULL (-0), and the qualifier “debug” (-q "debug"):

% upd addproduct footwo v1_0 -t0q "debug" \
-h dist_node.fnal.gov -T /tmp/footwo_v1_0_NULL.tar \
-U /local/path/to/ups/dir

After it is added, we can run the upd list -a command to see the
declaration on the distribution node:

% upd list -a -h dist_node footwo v1_0

DATABASE=/path/to/dist_db

 Product=footwo Version=v1_0 Flavor=NULL

 Qualifiers="debug" Chain="test"

18.4 Adding an Independent Table File

You need to use upd addproduct to add a new table file product (i.e., a
table file that isn’t a component of a product instance). Bundled products are
usually table files, for example. To replace a table file that is a component of a
product instance already declared to the database on the distribution node, use
upd modproduct as described in section 18.5 Replacing a Component
(Table File or ups Directory).

If the independent table file is declared to a local database, the command
syntax is:

% upd addproduct [<flavor_option>] [<other_options>]
<product>\ <version>

If the table file is not declared, the command syntax becomes:

% upd addproduct [-P] <flavor_option> -m
<tableFileName> \ [-M <tableFileDir>]
[<other_options>] <product> <version>

Making Products Available For Distribution 18-7

Example

The product foothree v1_0 consists only of a table file (it may be a bundled
product); therefore no tar file needs to be specified (no -T option). We want
to add it and declare it to KITS with no chain, no qualifiers, and the flavor
IRIX. We do not assume that it’s been declared to a local UPS database:

% upd addproduct foothree v1_0 -f IRIX -m foothree.table -M \
/local/path/to/table/file

The system returns a message saying there is no product root directory. This is
correct behavior, and is expected.

After the table file product is added, we can run the upd list -a
command to see its declaration in KITS:

% upd list -a foothree v1_0

DATABASE=/ftp/upsdbusr

 Product=foothree Version=v1_0 Flavor=IRIX

 Qualifiers="" Chain=""

18.5 Replacing a Component (Table File or
ups Directory)

Use upd modproduct to update the table file or ups directory of a
product already existing on the distribution node. This command cannot query
the local UPS database to find information the way upd addproduct can;
all necessary information must be specified on the command line. To replace a
table file, the command syntax is:

% upd modproduct <flavor_option> -m <tableFileName> \
[-M <tableFileDir>] [<other_options>] <product> <version>

Note: You must include the -m option specifying the table file name, as there
is no default. You must also include -M if the table file is not in the current
directory.

For replacing a ups directory, the syntax is:

% upd modproduct <flavor_option> -U <upsDir> \
[-m <tableFileName>] [-M <tableFileDir>] [<other_options>]\
<product> <version>

If the ups directory contains a newer table file that should replace the old
one on the distribution node, include the -m and -M options in the
command.

18-8 Making Products Available For Distribution

Example: Table File

Let’s replace the table file in KITS for the product foo v1_0, from Example 1
of section 18.3. The new table file, foo.table, has replaced the old one in
the product instance’s local ups directory. It doesn’t matter if the tar file has
been remade, since we’re not going to send it anyway.

% upd modproduct foo v1_0 -2 -m foo.table \
-M /local/path/to/ups/dir

If you issue the command from the directory specified by -M, then you don’t
need to include it on the command line.

Example: ups Directory

To replace a product instance’s ups directory, use the upd modproduct
command with the -U option. Specify as much product instance information
on the command line as necessary to uniquely identify the instance in the
distribution database to which this directory is to belong. Do not make a tar
file of the ups directory on your local machine. We illustrate with a product
called foofour v1_0, flavor SunOS, no qualifiers, and use KITS.

It doesn’t matter whether the product instance is declared to a UPS database
listed in $PRODUCTS, since upd modproduct won’t query the database
anyway. Regardless of its location, the ups directory location must be fully
specified, for example:

% upd modproduct foofour v1_0 -f SunOS \
-U /local/path/to/ups/dir

18.6 Adding/Changing a Chain

A product instance on a distribution node generally has at most one chain
associated with it at any time.1 Whenever you change a chain with upd
modproduct, you automatically delete any and all previously assigned
chains. The command syntax is:

% upd modproduct <flavor_option> <chain_option> \
[<other_options>] <product> <version>

1. A product instance can have multiple chains if they are declared together in the same
command (e.g., upd modproduct -g test:current ...).

Making Products Available For Distribution 18-9

Example 1

Product foo (of Example 1 in section 18.3) has no chain in its KITS
declaration. We now wish to declare a test chain for it. We run the upd
modproduct command with the -t option (or -g test works too), as
follows:

% upd modproduct foo v1_0 -f SunOS+5 -t

Running upd list -a now displays:

% upd list -a foo v1_0

DATABASE=/ftp/upsdbusr

 Product=foo Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain="test"

Example 2

This time we want to change an existing chain. Let’s change the test chain for
foo (declared in Example 1, above) to current. This will remove the test chain.

% upd modproduct foo v1_0 -f SunOS+5 -c

Running upd list now displays:

% upd list foo v1_0

DATABASE=/ftp/upsdbusr

 Product=foo Version=v1_0 Flavor=SunOS+5

 Qualifiers="" Chain="current"

Notice that since we were looking for a current version, we didn’t need to
specify -a in the upd list command.

Example 3

To remove a chain on an instance without assigning a new one or assigning the
chain to a different instance, you can use:

% upd modproduct foo v1_0 -f SunOS+5 -g :

This often generates warnings, but it works and causes no database problems.

18-10 Making Products Available For Distribution

18.7 Deleting a Product or Component

The upd delproduct command lets you delete a product declaration plus
the product itself and its associated files and directories. The product
subdirectory itself does not get deleted. You do not have the choice of leaving
an undeclared product in the products area on the distribution node. The
command syntax is:

% upd delproduct -f <flavor_option> [<other_options>] \
<product> <version>

Example 1

Let’s delete the product foo v1_0 (from Example 2 in section 18.6):

% upd delproduct foo v1_0 -cf SunOS+5

Example 2

Let’s delete the product foothree v1_0 from section 18.4. It’s just a table file.1

% upd delproduct foothree v1_0 -f IRIX

18.8 Cloning a Product

Use upd cloneproduct to create a new product instance on a
distribution node by copying one that is already there and changing one or
more of its identifying elements.

1. If there were a product that consisted only of a ups directory (unlikely), upd
delproduct would work for that too.

Making Products Available For Distribution 18-11

The command syntax is:

% upd cloneproduct <flavor_option> [<source_options>] \
<product> [<version>] -G "<target_options>"

where source refers to the original instance, and target to the cloned one.

To clone a product, you specify the usual UPS/UPD options to identify the
product, and then use the -G option to specify which attributes of the clone
should be different from the original.

Why would you want to do this? For example, say that an existing product for
the flavor IRIX+5 is found to be appropriate for IRIX+6, too. In this case, you
might want the product to appear on the distribution server listed under both
flavors. You could install the product on your local system, redeclare it, and
add it back to the distribution server, but a much quicker and more efficient
way is to use upd cloneproduct to clone the product instance right on
the distribution server. Here is a sample command for doing this:

% upd cloneproduct myproduct v1_0 -f IRIX+5 -G "-f IRIX+6"

You can put all sorts of options in the -G quoted argument list, including
product and version (with caveats); so you can even use upd
cloneproduct to make a clone with a different name, provided the
product’s table file doesn’t specify the product name. For example, to make a
clone of myprod called newprod in KITS, you’d issue a command like this:

% upd cloneproduct myproduct v1_0 -f IRIX+5 -G "newprod"

A few caveats:

• Within the -G option structure on the upd cloneproduct
command line, only include options such that a stanza of the source
product’s table file can be matched. A failure to match sometimes creates
a database inconsistency on the distribution node. In particular, be careful
about including qualifiers, e.g., -G "-q <qualifierList>", if
there is no stanza for Qualifiers = qualifierList.

• If you want product instance clones, one without qualifiers and the other
with, add the first instance without qualifiers, and clone it to a new
instance with qualifiers. Going the other way is error-prone.

• You can only make a clone with a different product name if the source
product’s table file doesn’t specify the product name.

18-12 Making Products Available For Distribution

18.9 Including Source in one of Fermilab’s
CVS Repositories

Different groups at Fermilab often depend upon each other’s software, and
people need to be able to rebuild products on occasion. The CVS Product
Repositories have been created to provide a structure allowing access to source
code with revision tracking. The product eligibility standards are described in
the document Using Fermilab CVS Product Source Repositories, on-line at
http://www.fnal.gov/docs/products/template_product/F
ermiRepository/FermiRepository.html.

18.10 Product Announcement Policies

The separate groups within the Computing Division have differing policies for
informing the group members and the user community about product
availability. Here we present a checklist of the kinds of things you will be
expected to do when you’re ready to make a product available. We refer you to
your group leader for information specific to your group.

Events which require notification actions on your part are:

• initially placing a product on fnkits, declared as “test” (recommended)

• declaring the product as current on fnkits

• installing the product in AFS space

• upgrading the product

• modifying or removing the product on/from fnkits

The general types of required actions are:

• Inform your group leader.

• Announce product according to group’s policy (newsgroups, product user
mailing lists)

• Send email to helpdesk@fnal.gov to inform them about the new product
or version. Include information on the kinds of questions to expect, if
possible, and where to direct users for help.

• Install the product on fnalu for the general Fermilab community, if
appropriate.

• Check all the chains on fnkits (and fnalu) to make sure that older versions,
flavors, etc. are no longer chained to current.

• Include source code for eligible product in a CVS Repository.

Making Products Available For Distribution 18-13

• Make documentation available on-line under
http://www.fnal.gov/docs/products/<product_name>.
Include html documentation.

• Fill out the on-line Computing Division Product Input Form at
http://cddocs.fnal.gov/cfdocs/productsDB/producti
nput.html to inform the products database maintainer about your
product arriving on fnkits.

18-14 Making Products Available For Distribution

