Run II Upgrades Status
September 2005 Report

Pushpa Bhat
Outline

• Technical Progress
 ➢ Highlights for Sep. -Oct. ’05
 ➢ Review of FY05 work since OPS review in Mar. 05
 ➢ Outlook for FY06/07
 ➢ Preview of v4 plan

• Status Report for September ’05
 ➢ Milestones
 ➢ % Complete
 ➢ M&S Costs
 ➢ Effort Report

• Change requests

• Contingency Analysis
Technical Highlights (1)

• Status of electron cooling in the Recycler
 - e-cool essentially integrated into HEP operations
 - Routine “Recycler only” stores
 • Up to 285E10 pbars stored in the machine
 • ~250E10 max transferred to Tevatron store
 - Cooling utilizes electron beam ~200mA
 • 670 mA for 30 minutes
 - Studying instabilities on over-cooling
 • Testing techniques for preventing the on-set of instabilities
 • Testing medium-band damper
 • Will review to proceed with broad-band damper

• Rapid Transfers
 - Accumulator to Recycler
 • AP1 ramping PS upgrade -in progress
 • AP1,AP3 beamline BPM upgrades done; P1,P2 to follow
 • Hall probes
 • Injection dampers in MI
Technical Highlights (2)

• **MI BPM electronics design review**
 - Conducted Oct. 12, ’05
 - Recommendation was to go ahead with procurement of parts
 - Project piggy-backs on Tev BPM project; many systems copied

• **Pbar situation**
 - Dave’s talk
 - **Target**
 - Had switched to Inconel-600 from stainless steel because of longevity issue, even though SS was declared the best target with regards to yield
 - New target/target motion/target cooling design being worked on
 - Beam sweeping to be re-visited
 - Internal report being prepared on target, Li lens, pulsed magnet status and plans.
Scope of Work

(DOE OPS review March ‘05)

• FY05
 - Continue optimizing slip-stacking (Operations) ✓
 - Complete Tev BPM project ✓
 - Commission 2.5 MHz pbar acceleration
 - Ready to implement for pbars from recycler
 - Suffers from lack of study time and support
 - Can save 10-15% pbars in each Tevatron shot
 - Continue improving pbar acceptance & stack rate
 - Work continues
 - What will we have? 20+, 30+ mA/hr ??
 - Improve diagnostics in AP2/DB/D→A ✓ continue
 - Commission electron cooling ✓
 - Continue helix/separators R&D ✓
 - Prepare TEL2, IPM and OTR for installation ✓
 - IPM, OTR will be ready
 - TEL2 status review in November
Scope of Work (DOE OPS review March ‘05)

• FY06
 - Make electron cooling operational ✓
 - Implement stacktail upgrades (in two steps)
 • Tank move as soon as stack rate/flux requires it
 • Decide on bandwidth upgrade in summer ‘06
 - Continue to improve antiproton acceptance
 - Commission TEL2 into operations
 - Complete MI BPM project (on track)
 - Complete BLM project (on track)

• FY07
 - Complete antiproton acceptance improvements
 - Complete helix improvements

V3→v4 Scope Change:
 Install & commission full bandwidth upgrade in ‘07 shutdown (v3 had it in ‘06)
Project Plan Version 4

• Will have a version 4 plan in Nov. - Dec. with revised scope for some projects
• Delay in shutdown (originally scheduled to start Aug. 8, ’05) impacts many projects
• Will re-baseline with new shutdown dates and new scope for v4.0 by Dec. 1
Preview of Version 4

• Redefining Operational Phases
• V3:
 - Phase 2: After slip-stacking ← current phase
 - Phase 3 ≡ e-cool for HEP + tank move
 - Phase 4 ≡ bandwidth upgrade + helix

• Proposal for V4:
 - Phase 3 ≡ Integration of e-cool for HEP
 - to commence on Nov. 1?
 - Phase 4: First phase of stacktail upgrade
 - tank move when we reach stack rates that would require it
 - Defer work on Stacktail bandwidth upgrade
 - Decision milestone in summer ‘06 (mid-July ‘06)
 - back from shutdown in June
 - Phase 5: bandwidth upgrade and/or remaining aperture
 + Tev upgrades
Other items for Version 4

- Separators done
 - All R&D wrapped up except Ti electrode but no plans for using in operation
 - Get the spares ready, transfer to Tev Department and close out

- Review TEL2 status and beam-beam simulation/studies
 - Likely to cancel TEL3
September Status
Milestones

<table>
<thead>
<tr>
<th>WBS</th>
<th>Name</th>
<th>MS Class</th>
<th>Finish</th>
<th>Base Fin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.3.2.1.2</td>
<td>MI BPM: Review (Milestone)</td>
<td>C</td>
<td>7/25/05</td>
<td>9/15/05</td>
</tr>
<tr>
<td>1.3.5.6.3.5</td>
<td>Obtain 500 MA DC Beam (Milestone)</td>
<td>C</td>
<td>7/27/05</td>
<td>7/26/05</td>
</tr>
<tr>
<td>1.3.5.6.4.3</td>
<td>Observe First Cooling (Milestone)</td>
<td>C</td>
<td>9/7/05</td>
<td>10/5/05</td>
</tr>
<tr>
<td>1.4.7.1.3</td>
<td>Review Tevatron Alignment Plans 2005 (Milestone)</td>
<td>C</td>
<td>10/3/05</td>
<td>8/1/05</td>
</tr>
<tr>
<td>1.1.3.3.5</td>
<td>MI 2.5 MHz Acceleration complete</td>
<td>B</td>
<td>11/3/05</td>
<td>1/31/05</td>
</tr>
<tr>
<td>1.3.5.13</td>
<td>Electron Cooling Operational (start to contrib to HEP)</td>
<td>C</td>
<td>1/2/06</td>
<td>1/2/06</td>
</tr>
<tr>
<td>1.5.5</td>
<td>Start Summer 05 Shutdown</td>
<td>C</td>
<td>2/6/06</td>
<td>8/8/05</td>
</tr>
<tr>
<td>1.2.2.11</td>
<td>Intermediate AP2&DB Improvements Complete (Milestone)</td>
<td>A</td>
<td>4/18/06</td>
<td>10/3/05</td>
</tr>
<tr>
<td>1.3.6.8</td>
<td>Rapid Transfers Operational (Milestone)</td>
<td>A</td>
<td>4/18/06</td>
<td>10/31/05</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Finish Summer 05 Shutdown</td>
<td>C</td>
<td>4/18/06</td>
<td>10/3/05</td>
</tr>
<tr>
<td>1.6.5.5</td>
<td>Start Phase 3 (Milestone)</td>
<td>A</td>
<td>4/18/06</td>
<td>1/2/06</td>
</tr>
<tr>
<td>1.3.3.1.2.4</td>
<td>Stacktail Reconfigured (option) (Milestone)</td>
<td>C</td>
<td>4/25/06</td>
<td>1/9/06</td>
</tr>
</tbody>
</table>

- ◇ Baseline Finish Date
- ♦ Actual Finish Date
- ○ Forecast Date

Run II PMG 10/20/05

Pushpa Bhat 11
% Complete

<table>
<thead>
<tr>
<th>WBS</th>
<th>Name</th>
<th>Actual %</th>
<th>Planned %</th>
<th>A/P %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Run II Upgrades</td>
<td>74%</td>
<td>82%</td>
<td>91%</td>
</tr>
<tr>
<td>1</td>
<td>Luminosity Upgrades</td>
<td>76%</td>
<td>83%</td>
<td>90%</td>
</tr>
<tr>
<td>1.1</td>
<td>Protons on Pbar Target</td>
<td>64%</td>
<td>71%</td>
<td>91%</td>
</tr>
<tr>
<td>1.2</td>
<td>Pbar Acceptance</td>
<td>61%</td>
<td>75%</td>
<td>82%</td>
</tr>
<tr>
<td>1.3</td>
<td>Pbar Stacking & Cooling</td>
<td>84%</td>
<td>93%</td>
<td>91%</td>
</tr>
<tr>
<td>1.4</td>
<td>Tevatron High Luminosity</td>
<td>77%</td>
<td>84%</td>
<td>92%</td>
</tr>
<tr>
<td>1.5</td>
<td>Shutdowns</td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Maintenance & Reliability</td>
<td>65%</td>
<td>70%</td>
<td>92%</td>
</tr>
<tr>
<td>2.1</td>
<td>2003 White Paper/Vulnerability Report</td>
<td>60%</td>
<td>59%</td>
<td>102%</td>
</tr>
<tr>
<td>2.2</td>
<td>Maintenance Improvements</td>
<td>71%</td>
<td>85%</td>
<td>83%</td>
</tr>
<tr>
<td>2.3</td>
<td>Project Management Oversight</td>
<td>66%</td>
<td>66%</td>
<td>100%</td>
</tr>
</tbody>
</table>

A/P % Complete: 93% last month

Shutdown delay ↔ Primary cause for further lag this month
M&S Spending through FY05

Run II Upgrades

<table>
<thead>
<tr>
<th>Category</th>
<th>FY05</th>
<th>Total</th>
<th>FY05 Obl+RIP Allocation</th>
<th>ITD Obl+RIP / Total Est</th>
<th>Inception FY05 Obl+RIP Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run II Upgrades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5,196</td>
<td>17,791</td>
<td>6,536</td>
<td>4,282</td>
<td>14,445</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity Upgrades</td>
<td>3,819</td>
<td>13,528</td>
<td>4,412</td>
<td>2,810</td>
<td>11,126</td>
</tr>
<tr>
<td>Protons on Target</td>
<td>537</td>
<td>1,607</td>
<td>629</td>
<td>290</td>
<td>1,321</td>
</tr>
<tr>
<td>Slip Stacking</td>
<td>10</td>
<td>417</td>
<td>10</td>
<td>32</td>
<td>406</td>
</tr>
<tr>
<td>Pbar Target and Sweeping</td>
<td>11</td>
<td>54</td>
<td>0</td>
<td>-3</td>
<td>12</td>
</tr>
<tr>
<td>MI Upgrades</td>
<td>447</td>
<td>963</td>
<td>550</td>
<td>93</td>
<td>597</td>
</tr>
<tr>
<td>Booster-MI Cogging</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTR</td>
<td>69</td>
<td>174</td>
<td>69</td>
<td>118</td>
<td>255</td>
</tr>
<tr>
<td>1.1 Protons on Target</td>
<td>1,607</td>
<td>5,196</td>
<td>629</td>
<td>290</td>
<td>1,321</td>
</tr>
<tr>
<td>Slip Stacking</td>
<td>10</td>
<td>417</td>
<td>10</td>
<td>32</td>
<td>406</td>
</tr>
<tr>
<td>Pbar Target and Sweeping</td>
<td>11</td>
<td>54</td>
<td>0</td>
<td>-3</td>
<td>12</td>
</tr>
<tr>
<td>MI Upgrades</td>
<td>447</td>
<td>963</td>
<td>550</td>
<td>93</td>
<td>597</td>
</tr>
<tr>
<td>Booster-MI Cogging</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTR</td>
<td>69</td>
<td>174</td>
<td>69</td>
<td>118</td>
<td>255</td>
</tr>
<tr>
<td>1.1.1 Slip Stacking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2 Pbar Target and Sweeping</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.1.3 MI Upgrades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4 Booster-MI Cogging</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.1.5 OTR</td>
<td>69</td>
<td>174</td>
<td>69</td>
<td>118</td>
<td>255</td>
</tr>
<tr>
<td>1.2 pbar Acceptance</td>
<td>486</td>
<td>1,444</td>
<td>342</td>
<td>409</td>
<td>854</td>
</tr>
<tr>
<td>LiLens</td>
<td>99</td>
<td>517</td>
<td>102</td>
<td>176</td>
<td>298</td>
</tr>
<tr>
<td>AP2 and DB Acceptance</td>
<td>387</td>
<td>928</td>
<td>240</td>
<td>233</td>
<td>556</td>
</tr>
<tr>
<td>1.2.1 LiLens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.2 AP2 and DB Acceptance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 pbar Stacking and Cooling</td>
<td>1,413</td>
<td>5,072</td>
<td>1,173</td>
<td>1,123</td>
<td>4,215</td>
</tr>
<tr>
<td>S&C Task Force</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Debuncher Cooling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stacktail Upgrade</td>
<td>102</td>
<td>1,507</td>
<td>105</td>
<td>184</td>
<td>876</td>
</tr>
<tr>
<td>Recycler Commissioning</td>
<td>227</td>
<td>469</td>
<td>228</td>
<td>88</td>
<td>295</td>
</tr>
<tr>
<td>1.3.1 Stacktail Upgrade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.2 Recycler Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3 Electron Cooling</td>
<td>776</td>
<td>2,536</td>
<td>522</td>
<td>681</td>
<td>2,562</td>
</tr>
<tr>
<td>1.3.4 Electron Cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIP</td>
<td>384</td>
<td>1,777</td>
<td>126</td>
<td>300</td>
<td>1,865</td>
</tr>
<tr>
<td>Non AIP</td>
<td>392</td>
<td>759</td>
<td>396</td>
<td>381</td>
<td>697</td>
</tr>
<tr>
<td>1.3.6 Rapid Transfers</td>
<td>307</td>
<td>560</td>
<td>318</td>
<td>170</td>
<td>482</td>
</tr>
<tr>
<td>1.4 Tevatron High Luminosity</td>
<td>1,277</td>
<td>5,207</td>
<td>1,205</td>
<td>989</td>
<td>4,635</td>
</tr>
<tr>
<td>Beam Studies and Simulation</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>Active BBC</td>
<td>360</td>
<td>1,414</td>
<td>360</td>
<td>431</td>
<td>909</td>
</tr>
<tr>
<td>Increased Helix Separation</td>
<td>393</td>
<td>1,039</td>
<td>221</td>
<td>212</td>
<td>1,017</td>
</tr>
<tr>
<td>1.4.1 Beam Studies and Simulation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>1.4.2 Active BBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.3 Increased Helix Separation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4.4 Luminosity Leveling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.4.5 Luminosity Leveling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.4.6 Improved Controls and Diagnostics</td>
<td>278</td>
<td>2,174</td>
<td>358</td>
<td>256</td>
<td>2,173</td>
</tr>
<tr>
<td>1.4.7 Tevatron Vacuum Improvements</td>
<td>55</td>
<td>235</td>
<td>80</td>
<td>35</td>
<td>228</td>
</tr>
<tr>
<td>1.4.8 Tevatron Alignment</td>
<td>191</td>
<td>307</td>
<td>186</td>
<td>56</td>
<td>267</td>
</tr>
<tr>
<td>1.5 Management</td>
<td>106</td>
<td>198</td>
<td>1,063</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>2 Reliability Upgrades</td>
<td>1,377</td>
<td>4,262</td>
<td>2,124</td>
<td>1,472</td>
<td>3,319</td>
</tr>
<tr>
<td>2.1 Vulnerability White Paper</td>
<td>702</td>
<td>2,599</td>
<td>1,306</td>
<td>1,225</td>
<td>2,051</td>
</tr>
<tr>
<td>2.2 Reliability Upgrades</td>
<td>675</td>
<td>1,663</td>
<td>818</td>
<td>247</td>
<td>1,268</td>
</tr>
</tbody>
</table>

Note: Obl+RIP = Obligation + Reserve in Place
Effort for September 2005

Adjusted FTE September 2005

<table>
<thead>
<tr>
<th>Division</th>
<th>AD</th>
<th>TD</th>
<th>PPD</th>
<th>CD</th>
<th>Totals</th>
<th>3 MO rolling ave.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run II Upgrades</td>
<td>49.5</td>
<td>6.4</td>
<td>9.9</td>
<td>6.5</td>
<td>72.4</td>
<td>80.7</td>
</tr>
<tr>
<td>1 Luminosity Upgrades</td>
<td>48.5</td>
<td>3.4</td>
<td>3.4</td>
<td>6.5</td>
<td>61.9</td>
<td>69.8</td>
</tr>
<tr>
<td>1.1 Protons on Target</td>
<td>4.2</td>
<td>0.0</td>
<td>1.1</td>
<td>5.1</td>
<td>10.4</td>
<td>10.5</td>
</tr>
<tr>
<td>1.2 pbar Acceptance</td>
<td>6.4</td>
<td>2.1</td>
<td>0.0</td>
<td>0.0</td>
<td>8.5</td>
<td>7.0</td>
</tr>
<tr>
<td>1.3 pbar Stacking and Cooling</td>
<td>23.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>23.7</td>
<td>25.7</td>
</tr>
<tr>
<td>1.4 Tevatron High Luminosity</td>
<td>12.4</td>
<td>1.3</td>
<td>2.3</td>
<td>1.4</td>
<td>17.4</td>
<td>22.7</td>
</tr>
<tr>
<td>1.6 Management</td>
<td>1.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.8</td>
<td>3.9</td>
</tr>
<tr>
<td>2 Reliability Upgrades</td>
<td>1.0</td>
<td>3.0</td>
<td>6.6</td>
<td>0.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
</tbody>
</table>

Shutdown delay taken into account
Current Change Requests (M&S)

- Thyratron replacement prototype $65K
- MI BPM $100K
- Drop 7835 development facility -$100K
- BLM prototype iteration 2 $10K
- Operational improvements for protons on target (Booster, Main Injector) $316K

Total : $391K
Contingency Analysis

- Estimate to complete: $18,665K - $14,445K = $4,220K
- Contingency remaining: $20,946K - $18,665K = $2,281K
 (Of this $550K has been borrowed for cryomodule clean room)

- Contingency Need estimate
 - MI BPM $200K
 - Rapid Transfers $100K
 - Recycler $200K
 - E-cool $100K
 - Stacktail $300K
 - Other $200K

 Major Concerns/New scope?
 - Pbar Stack rate related $200K

 → $1.3 M

- Serious Vulnerability → Linac 7835 tubes
 - Test station for candidate tubes ~ $2 M
Change Requests (Nov. ‘05)

- **E-cool upgrades** $100K
- **Tev upgrades visitors/travel** $30K
- **Target upgrades** $20K
- **Ramp corrector PS @F23** $20K
- **Tev Separator vacuum shells** $210K

- **Total: 380K**