Physics Reach of Reactor Neutrino Oscillations Experiments

Jonathan Link
Columbia University

Director’s Review of Initiatives in Neutrino Physics
June 9, 2004
Outline

1. Reactor Neutrino Primer
2. Physics of the θ_{13} Sector at Reactors
3. Experimental Method: How to measure a small disappearance
4. Possible Experiment Sites
5. Sensitivity and the Big Picture
6. Experiment Timeline
7. Conclusions
The original neutrino discovery experiment, by Reines and Cowan, used reactor neutrinos…

…actually anti-neutrinos. The ν_e interacts with a free proton via inverse β-decay:

$\nu_e \rightarrow e^+ + p \rightarrow e^+ + n + \gamma$

Later the neutron captures giving a coincidence signal. Reines and Cowan used cadmium to capture the neutrons.
Nuclear Reactors as a Neutrino Source

- Nuclear reactors are a very intense source of $\bar{\nu}_e$ deriving from the β-decay of the neutron-rich fission fragments.

- A typical commercial reactor, with 3 GW thermal power, produces $6 \times 10^{20} \ \bar{\nu}_e/s$

- The observable $\bar{\nu}_e$ spectrum is the product of the flux and the cross section.

- The spectrum peaks around ~ 3.6 MeV.

- Visible “positron” energy implies ν energy

 $$E_\nu = E_e + 0.8 \ \text{MeV} \ (= m_n - m_p + m_e - 1.022)$$

- Minimum energy for the primary signal is 1.022 MeV from e^+e^- annihilation at process threshold.

- Two part coincidence signal is crucial for background reduction.
Physics of θ_{13} at Reactors

- The reactor experiment is the only one that can make an unambiguous measurement of the mixing parameter $\sin^2 2\theta_{13}$.
Chooz and Palo Verde Reactor Experiments

- Neither experiments found evidence for $\bar{\nu}_e$ oscillation.

- This null result eliminated $\nu_\mu \rightarrow \nu_e$ as the primary mechanism for the Super-K atmospheric deficit.

- $\sin^2 2\theta_{13} < 0.18$ at 90% CL (at $\Delta m^2 = 2.0 \times 10^{-3}$)

- Future experiments should try to improve on these limits by at least an order of magnitude.

 Down to $\sin^2 2\theta_{13} \leq 0.01$
Physics of θ_{13} at Reactors

- The reactor experiment is the only one that can make an unambiguous measurement of the mixing parameter $\sin^2 2\theta_{13}$.

- Sensitivity should reach $\sin^2 2\theta_{13} \leq 0.01$ at 90% CL in three years of running. Better sensitivity is possible.
The θ_{23} Degeneracy Problem

Atmospheric neutrino measurements are sensitive to $\sin^22\theta_{23}$

$$P(\nu_\mu \rightarrow \nu_x) = \sin^2 2\theta_{23} \sin^2 \left(\frac{1.27 \Delta m^2_{23} L}{E_\nu} \right)$$

But the leading order term in $\nu_\mu \rightarrow \nu_e$ oscillations is

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{1.27 \Delta m^2_{13} L}{E_\nu} \right)$$

If the atmospheric oscillation is not exactly maximal ($\sin^22\theta_{23}<1.0$) then $\sin^2\theta_{23}$ has a twofold degeneracy
Physics of θ_{13} at Reactors

• The reactor experiment is the only one that can make an unambiguous measurement of the mixing parameter $\sin^2 2\theta_{13}$.

• Sensitivity should reach $\sin^2 2\theta_{13} \leq 0.01$ at 90% CL in three years of running. Better sensitivity is possible.

• In conjunction with the off-axis (beam experiments) the reactor experiment determines the value of $\sin^2 \theta_{23}$.

• Direct knowledge of the mixing angles is important in its own right! Could be crucial to constructing a theory of flavor.

• The reactor measurement determines the feasibility of CP violation and mass hierarchy studies in off-axis.
How Do You Measure a Small Disappearance?

• Use identical near and far detectors to cancel many sources of systematics.
$\sin^2 2\theta_{13}$ Reactor Experiment Basics

Well understood, isotropic source of electron anti-neutrinos
$E_{\nu} \leq 8 \text{ MeV}$

Oscillations observed as a deficit of $\bar{\nu}_e$

Unoscillated flux observed here

Survival Probability

$$P(\bar{\nu}_e \rightarrow \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{13}^2 L / E_{\nu})$$

Distance

1200 to 1800 meters
How Do You Measure a Small Disappearance?

- Use identical near and far detectors to cancel many sources of systematics.

- Design detectors to eliminate the need for analysis cuts that may introduce systematic error.
Detector Design Basics

- Homogenous Volume
- Viewed by PMT’s
 Coverage of 20% or better
- Gadolinium Loaded, Liquid Scintillator Target
 Enhances neutron capture
- Unloaded Scintillator Region
 To capture energy from gamma rays. *Eliminates need for fiducial volume cut.*
- Pure Mineral Oil Buffer
 To shield the scintillator from radioactivity in the PMT glass.
 Allows you to set an energy cut well below the 1 MeV e^+e^- annihilation energy.
How Do You Measure a Small Disappearance?

• Use identical near and far detectors to cancel many sources of systematics.

• Design detectors to eliminate the need for analysis cuts that may introduce systematic error.

• Detector cross calibration may be used to further reduce the near/far normalization systematic error.
Movable Detectors for Cross Calibration

The far detector spends about 10% of the run at the near site where the relative normalization of the two detectors is measured head-to-head.

Build in all the calibration tools needed for a fixed detector system and verify them against the head-to-head calibration.
How Do You Measure a Small Disappearance?

• Use identical near and far detectors to cancel many sources of systematics.

• Design detectors to eliminate the need for analysis cuts that may introduce systematic error.

• Detector cross calibration may be used to further reduce the near/far normalization systematic error.

• Reduce background rate and uncertainty
Backgrounds

There are two types of background…

1. Uncorrelated – Two random events that occur close together in space and time and mimic the parts of the coincidence.

 This BG rate can be estimated by measuring the singles rates, or by switching the order of the coincidence events.

2. Correlated – One event that mimics both parts of the coincidence signal.

 These may be caused fast neutrons (from cosmic µ’s) that strike a proton in the scintillator. The recoiling proton mimics the e^+ and the neutron captures.

 Or they may be cause by muon produced isotopes like 9Li and 8He which sometimes decay to $\beta+n$.

Estimating the correlated rate is much more difficult!
How Do You Measure a Small Disappearance?

• Use identical near and far detectors to cancel many sources of systematics.

• Design detectors to eliminate the need for analysis cuts that may introduce systematic error.

• Detector cross calibration may be used to further reduce the near/far normalization systematic error.

• Reduce background rate and uncertainty
Veto Background Events

Fast neutrons

Veto μ’s and shield neutrons

9Li and 8He

E ≤ 10.6 MeV

τ½ = 0.18 to 0.12 s

0.075 produced/ton/day (450 mwe)

50% to 16% correlated β+n

A ½ second veto after every muon that deposits more that 2 GeV in the detector should eliminate 70 to 80% of all correlated decays.
How Do You Measure a Small Disappearance?

- Use identical near and far detectors to cancel many sources of systematics.

- Design detectors to eliminate the need for analysis cuts that may introduce systematic error.

- Detector cross calibration may be used to further reduce the near/far normalization systematic error.

- Reduce background rate and uncertainty
 - Go as deep as you can
 - Veto
 - Use vetoed events to make a subtraction or in an energy fit
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power ($\text{GW}_{\text{thermal}}$)</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Many Sites have been investigated as potential hosts to a reactor neutrino experiment. This is appropriate since getting the cooperation of the reactor company is the main challenge.
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power (GW<sub>thermal</sub>)</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>

![Status]

[Status Image]
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power (GW\textsubscript{thermal})</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Kashiwazaki, Japan (Minakata, Sugiyama, Yasuda, Inoue, and Suekane hep-ph/0211111)

- 7 Reactors, 24 GW_{th}
- Three ~8.5 ton detectors
- Two near detectors at baselines of 300 to 350 meters
- One far detector at ~1300 meters
- 21 different baselines!
- Sensitivity of $\sin^22\theta_{13} \leq 0.02$ in 2 years
- Fast! Reaches systematics limit quickly
- Currently working its way through the Japanese system
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power (GW\textsubscript{thermal})</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Status

- Traffic Light: Green
- Interpretation: Site is approved.
Double CHOOZ, France

- Use old far detector hall at ~1050 meters
- Near detector at 125-250 meters (~50 mwe)
- 11 ton Gd loaded detectors.
- Sensitivity of $\sin^2 2\theta_{13} \leq 0.03$ in 3 years
 Fast and Inexpensive
- Has scientific approval
- Recently released an LOI (hep-ex/0405032)
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power (GW_{thermal})</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Status

- Green: Operational
- Yellow: Under Construction
- Red: Closed

- Location: Diablo Canyon, CA
- Distance: ~2.5 km
- Detection Method: 2 underground v detectors
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power ($GW_{thermal}$)</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power ($GW_{thermal}$)</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Braidwood, Illinois

- Three (or more) 25 ton detectors
- Near detector at 200 meters & 450 mwe
- Two far detectors located somewhere between 1500 & 1800 meters, 450 mwe
- Sensitivity of $\sin^2 2\theta_{13} \leq 0.01$ in 3 years
- High level of cooperation with utility
Proposed Sites Around the World

<table>
<thead>
<tr>
<th>Site</th>
<th>Power (GW\textsubscript{thermal})</th>
<th>Baseline Near/Far (m)</th>
<th>Shielding Near/Far (mwe)</th>
<th>Sensitivity 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krasnoyarsk, Russia</td>
<td>1.6</td>
<td>115/1000</td>
<td>600/600</td>
<td>0.03</td>
</tr>
<tr>
<td>Kashiwazaki, Japan</td>
<td>24</td>
<td>300/1300</td>
<td>150/250</td>
<td>0.02</td>
</tr>
<tr>
<td>Double Chooz, France</td>
<td>8.4</td>
<td>150/1050</td>
<td>30/300</td>
<td>0.03</td>
</tr>
<tr>
<td>Diablo Canyon, CA</td>
<td>6.7</td>
<td>400/1700</td>
<td>50/700</td>
<td>0.01</td>
</tr>
<tr>
<td>Angra, Brazil</td>
<td>5.9</td>
<td>500/1350</td>
<td>50/500</td>
<td>0.02</td>
</tr>
<tr>
<td>Braidwood, IL</td>
<td>7.2</td>
<td>200/1700</td>
<td>450/450</td>
<td>0.01</td>
</tr>
<tr>
<td>Daya Bay, China</td>
<td>11.5</td>
<td>250/2100</td>
<td>250/1100</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Daya Bay, China

- 4 Reactors, 11.5 GW$_{th}$
- Several ~8 ton detectors
- Near detectors at baseline of 300 and 400 meters, 200 to 250 mwe
- Far detectors at baselines of 1800 and 2400 meters, 1100 mwe
- Sensitivity of $\sin^2\theta_{13} \leq 0.01$ in 3 years

- Utility/government approval is likely
- China would support civil construction, but foreign support is needed for detectors
Reactor Sensitivity

- Sensitivity to $\sin^2 2\theta_{13} \leq 0.01$ at 90% CL is achievable.
Reactor Sensitivity

- Sensitivity to $\sin^2 2\theta_{13} \leq 0.01$ at 90% CL is achievable.
- Combining with off-axis ν and $\bar{\nu}$ running, the θ_{23} degeneracy is broken.
Reactor Sensitivity

- Sensitivity to $\sin^2 2\theta_{13} \leq 0.01$ at 90% CL is achievable.
- Combining with off-axis ν and $\bar{\nu}$ running, the θ_{23} degeneracy is broken.
- The Double Chooz sensitivity of 0.03 is not sufficient to break the degeneracy.
Reactor Sensitivity

- Sensitivity to $\sin^2 2\theta_{13} \leq 0.01$ at 90% CL is achievable.
- Combining with off-axis ν and $\bar{\nu}$ running, the θ_{23} degeneracy is broken.
- The Double Chooz sensitivity of 0.03 is not sufficient to break the degeneracy.
- The degeneracy is broken even if the error on θ_{23} is not so small.
Reactors Sensitivity

The sensitivity may be pushed lower with large detectors sensitive to a shape deformation.

The location of the transition from rate to shape depends on the level of systematic error.
Comparison of Reactor to Off-axis

90% CL upper limits for an underlying $\sin^22\theta_{13}$ of zero

A medium scale reactor experiment, like Braidwood, makes a more stringent limit on $\sin^22\theta_{13}$ than off axis, even with proton driver like statistics ($\times 5$ beam rate).

After a reactor limit, only a small window of opportunity exists for an observation of ν_μ to ν_e at off-axis.
Comparison of Reactor to Off-axis

Chooz-like, small scale
Braidwood-like medium scale

90% CL regions for $\sin^2 2\theta_{13} = 0.05$, $\delta_{CP}=0$ and $\Delta m^2 = 2.5 \times 10^{-3}$ eV2

In the case of an observation, even the Double Chooz scale measurement makes a better determination of $\sin^2 2\theta_{13}$ than off-axis.
Reactor Contribution to CP Violation

For $\delta_{CP} = 270^\circ$ the reactor measurement eliminates some of the range in CP phase when combined with off-axis ν only running.

Off-axis anti-neutrino running resolves the CP problem on its own, after an additional 3 to 5 years.

Combining all data sets, the best precision on $\sin^2 2\theta_{13}$ comes from the reactor experiment.
Determining Reach in CP Violation

To the right of the curve, $\delta_{CP}=0$ is excluded by at least two sigma.

Reactor measurement does not contribute much to measuring CP violation…

But a null measurement, even at the Double Chooz sensitivity, can mostly rule out the measurement in off-axis.

$\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$
Determining Reach in Mass Hierarchy

Dashed – without Reactor
Solid – with medium scale Reactor

To the right of the curve, mass hierarchy is resolved by at least two sigma

Reactor measurement does not contribute much to resolving the mass hierarchy...

But a null measurement, even at the Double Chooz sensitivity, can mostly rule out the measurement in off-axis.

$\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$
Combining Off-axis and Reactor

The reactor measurement may not agree with the results of the off-axis experiments.

This may indicate new physics.

For example:

The reactor experiment is blind to an LSND-like oscillation, but it shows up in off-axis as an unexpectedly large ν_e appearance. The combination of the two experiments can resolve the effect.
Experiment Timeline

- **2003**: Site Selection
- **2004**: Proposal
- **2005**: Construction
- **2006**–**2008**: Run Phase
- **2009**: Run Phase
- **2010**
- **2011**: Run Phase

Site Selection: Currently underway.

The early work on a proposal is currently underway.

With movable detectors, the detector construction goes in parallel with the civil construction.

Run Phase: Initially planned as a three year run. Results or events may motivate a longer run. Should start data taking by 2009.
Conclusions and Prospects

• Reactor neutrinos experiments make the only direct, unambiguous measurement of $\sin^2 2\theta_{13}$.

• The value of $\sin^2 2\theta_{13}$ determines whether off-axis will be able to measure CP violation or determine the mass hierarchy.

• When combined with off-axis the θ_{23} degeneracy can be broken.

• Controlling the systematic errors is the key to making the reactor measurement.

• With a 3+ year run, the sensitivity in $\sin^2 2\theta_{13}$ should reach 0.01 (90% CL) at $\Delta m^2 = 2.0 \times 10^{-3}$.
Conclusions and Prospects

• Reactor sensitivities are similar to off-axis and the two methods are complementary.

• There are many ideas for reactor θ_{13} experiments around the world and it is likely that more than one will go forward.

• Reactor neutrinos are an important part of future neutrino oscillation studies.
Question Slides
Why Use Gadolinium?

Gd has a huge neutron capture cross section. So you get faster capture times and smaller spatial separation. (Helps to reduce random coincidence backgrounds)

Also the 8 MeV capture energy (compared to 2.2 MeV on H) is distinct from primary interaction energy.
Characterizing BG with Vetoed Events

Matching distributions from vetoed events outside the signal region to the non-veto events will provide an estimate of correlated backgrounds that evade the veto.

Other Useful Distributions:

- Spatial separation prompt and delayed events
 Faster neutrons go farther
- Radial distribution of events
 BGs accumulate on the outside of the detector.
Isotope Production by Muons

<table>
<thead>
<tr>
<th>Source</th>
<th>300 mwe (ton/day)</th>
<th>450 mwe (ton/day)</th>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9Li+8He</td>
<td>0.17 ± 0.03</td>
<td>0.075 ± 0.014</td>
<td>$E \leq 13.6$ MeV, $\tau_{1/2} = 0.12$ to 0.18 s 16% to 50% correlated β+n</td>
</tr>
<tr>
<td>8Li</td>
<td>0.28 ± 0.11</td>
<td>0.13 ± 0.05</td>
<td>$E \leq 16$ MeV, $\tau_{1/2} = 0.84$ s</td>
</tr>
<tr>
<td>6He</td>
<td>1.1 ± 0.2</td>
<td>0.50 ± 0.07</td>
<td>$E \leq 3.5$ MeV, $\tau_{1/2} = 0.81$ s</td>
</tr>
<tr>
<td>11C</td>
<td>63 ± 9</td>
<td>28 ± 4</td>
<td>$E \leq 0.96$ MeV, $\tau_{1/2} = 20$ m</td>
</tr>
<tr>
<td>10C</td>
<td>8.0 ± 1.5</td>
<td>3.6 ± 0.6</td>
<td>$E \leq 1.98$ MeV, $\tau_{1/2} = 19$ s</td>
</tr>
<tr>
<td>9C</td>
<td>0.34 ± 0.11</td>
<td>0.15 ± 0.05</td>
<td>$E \leq 16$ MeV, $\tau_{1/2} = 0.13$ s</td>
</tr>
<tr>
<td>8B</td>
<td>0.50 ± 0.12</td>
<td>0.22 ± 0.05</td>
<td>$E \leq 13.7$ MeV, $\tau_{1/2} = 0.77$ s</td>
</tr>
<tr>
<td>7Be</td>
<td>16.0 ± 2.6</td>
<td>7.2 ± 1.1</td>
<td>$E \leq 478$ keV, $\tau_{1/2} = 0.53$ d</td>
</tr>
<tr>
<td>12B</td>
<td>11</td>
<td>3</td>
<td>$E \leq 13.4$ MeV, $\tau_{1/2} = 0.02$ s</td>
</tr>
</tbody>
</table>
Medium Baseline Oscillation Searches

- Homogeneous detector
- 5 ton, Gd loaded, scintillating target
- 300 meters water equiv. shielding
- 2 reactors: 8.9 GW\textsubscript{thermal}
- Baselines 1115 m and 998 m
- Used new reactors \rightarrow reactor off data for background measurement
Medium Baseline Oscillation Searches

- Homogeneous detector
- 5 ton, Gd loaded, scintillating target
- 300 meters water equiv. shielding
- 2 reactors: 8.9 GW$_{\text{thermal}}$
- Baselines 1115 m and 998 m
- Used new reactors → reactor off data for background measurement
Palo Verde

- 32 mwe shielding (Shallow!)
- Segmented detector:
 Better at handling the cosmic rate of a shallow site
- 12 ton, Gd loaded, scintillating target
- 3 reactors: 11.6 GW\textsubscript{thermal}
- Baselines 890 m and 750 m
- No full reactor off running
Palo Verde

- 32 mwe shielding (Shallow!)
- Segmented detector:
 Better at handling the cosmic rate of a shallow site
- 12 ton, Gd loaded, scintillating target
- 3 reactors: 11.6 GW$_{thermal}$
- Baselines 890 m and 750 m
- No full reactor off running
Exelon has agreed to work with us to determine the feasibility of using their reactors to perform the experiment.

“We are excited about the possibility of participating in a scientific endeavor of this nature.”

“At this time we see no insurmountable problems that would preclude going forward with this project.”

They have given us reams of geological data which we are currently digesting.
Limestone Layer

Limestone layer starts at a depth of 272 ft (~200 mwe) and extends to 640 ft (~480 mwe).

We are considering two scenarios: 300 mwe and 450 mwe.

New shaft site bore holes will determine if 450 mwe is practical (groundwater).

Bore holes will also allow us to measure the rock density.
Natural Radioactivity in Limestone

\(^{238}U \) and \(^{232}Th \) in different rock types

<table>
<thead>
<tr>
<th>Type of Rock</th>
<th>(U) (ppm)</th>
<th>(Th) (ppm)</th>
<th>(U(\alpha, n))</th>
<th>(Th(\alpha, n)) Fission</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite</td>
<td>5</td>
<td>11</td>
<td>7.85</td>
<td>7.755</td>
<td>2.33</td>
</tr>
<tr>
<td>Limestone</td>
<td>1</td>
<td>1</td>
<td>0.64</td>
<td>0.285</td>
<td>0.467</td>
</tr>
<tr>
<td>Sandstone</td>
<td>1</td>
<td>1</td>
<td>0.837</td>
<td>0.38</td>
<td>0.467</td>
</tr>
<tr>
<td>Granite A</td>
<td>1.32</td>
<td>7.79</td>
<td>2.24</td>
<td>5.92</td>
<td>0.62</td>
</tr>
<tr>
<td>Granite B</td>
<td>6.25</td>
<td>4.59</td>
<td>10.62</td>
<td>3.49</td>
<td>2.92</td>
</tr>
<tr>
<td>Granite C</td>
<td>1.83</td>
<td>4.38</td>
<td>3.11</td>
<td>3.33</td>
<td>0.85</td>
</tr>
<tr>
<td>Salt I</td>
<td>0.30</td>
<td>2.06</td>
<td>1.60</td>
<td>4.77</td>
<td>0.14</td>
</tr>
<tr>
<td>Salt II</td>
<td>0.13</td>
<td>1.80</td>
<td>4.17</td>
<td>0.69</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Natural radioactivity is very low in the dolomitic limestone layer.
Quantitative Analysis of Movable vs. Fixed Detectors

Both the Kashiwazaki and Krasnoyarsk proposals assume that they can get the relative normalization systematic down to 0.8% with fixed detectors.

Double Chooz believes that 0.6% is achievable.

Even if you halve the relative normalization, fixed detector are not as sensitive for a two year (or longer) run.

All fixed detector scenario quickly become systematics limited.
At the preferred Δm^2 the optimal region is quite wide. In a configuration with a tunnel connecting the two detector sites, one should choose a far baseline that gives the shortest tunnel (1200 to 1400 meters).

One must consider both the location of the oscillation maximum (~2200 m at $\Delta m^2=2\times10^{-3}$) and statistics loss due to $1/r^2$ flux.

7 GW, 50 tons, 200 meters Near BL and 3 Years

At the preferred Δm^2 the optimal region is quite wide. In a configuration with a tunnel connecting the two detector sites, one should choose a far baseline that gives the shortest tunnel (1200 to 1400 meters).
Optimal Far Baseline

At the preferred Δm^2 the optimal region is quite wide. In a configuration with a tunnel connecting the two detector sites, one should choose a far baseline that gives the shortest tunnel (1200 to 1400 meters).

One must consider both the location of the oscillation maximum (~ 2200 m at $\Delta m^2 = 2 \times 10^{-3}$) and statistics loss due to $1/r^2$ flux.

Kinematic Phase $\equiv 1.27 \Delta m^2 L/E$ for $E=3.6$ MeV
Sensitivity Scaling with Systematic Error

For a rate only analysis

The optimal baseline is very sensitive to the level of systematic error.

The standard assumption of 0.8% relative efficiency error for fixed detectors is ~250% of the statistical error after 3 years at Braidwood.
The optimal Baseline for the systematics limited shape analysis is ~40º.

The optimal baseline for the systematics limited counting experiment is at the least optimal spot for a shape analysis!

You better know what regime your working in.
Sensitivity wrt Near Baseline

Ultimately the location of the near detector will be determined by the reactor owners. The main question here is what can we live with?

There is a $1/r^2$ dependence in statistics (a small effect) and increasing oscillation probability with distance.

Sensitivity degrades with increasing near baseline. When $L_{\text{near}} = L_{\text{far}}$ the sensitivity is about the same as CHOOZ.