Prospects for Measuring $K \rightarrow \pi v \bar{v}$ at Fermilab Project X

Douglas Bryman University of British Columbia

$K \rightarrow \pi v \bar{v}$ Experiments

High sensitivity experiments would expand the $K \rightarrow \pi v \bar{v}$ discovery potential.

M. Blanke, et al., arXiv:hep-ph/0610298.

$K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$ Experiment Concept

- Use TOF to work in the K_L^0 c.m. system
- Identify main 2-body background $K_L^0 \rightarrow \pi^0 \pi^0$
- Reconstruct $\pi^0 \rightarrow \gamma \gamma$ decays with pointing calorimeter
- 4π solid angle photon and charged particle vetos

 $K_I^0 \to \pi^0 \nu \overline{\nu}$

- High intensity of Project X is ideal for the TOF-based K_L experiment.
 - Small aperture, symmetric beam makes for simpler, higher acceptance detector
 - Exploit advances in instrumentation
- 300 events/year at 1st stage of Project X;
 3% precision possible after 5 years.
- 5 times higher intensity could be used to get ~900 events/year

Compact High Field System for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

Improvement of techniques developed at BNL E787/949

2-3T

- Low $P_{K} \sim 400 \text{ MeV/c}$ for high stopping efficiency
- Sci-Fi target and range stack for high rate
- $\pi \rightarrow \mu \rightarrow e$ measurements
- High acceptance and precise momentum measurement to suppress $K^+ \rightarrow \pi^+ \pi^0 \ K^+ \rightarrow \mu^+ \mu$ background
- $K^+ \to \pi^+ \pi^0, K^+ \to \mu^+ \nu$ backgrounds
- "Ideal" homogeneous photon veto e.g. LXe 20 X₀

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	FNAL "Booster" (20 kW)	FNAL Project- X	FNAL Project- X Upgrade
Events/yr*	40	250	1500
Events/5yr	200	1300	7400
Precision **	8	3	1.5

*Estimates based on extrapolation of BNL E949.

** Includes separate estimates of backgrounds in Regions I (10%) and 2(75%).

Kaon Experiment Issues

- Details of scheme for delivering ~100% duty factor.
- Uncertainties in K production cross-sections at 8 GeV.
- Dual targeting for charged and neutral experiments appears feasible but needs examination.
- Some detector technology R&D would be valuable.
- Further development of CKM parameters (from theory and B physics) needed for 3% measurements.

Project X Kaon Working Group Conclusions:

- Precise measurements of $K^+ \to \pi^+ \nu \overline{\nu}$ and $K_L^0 \to \pi^0 \nu \overline{\nu}$ are highly motivated by exploration of high mass scale physics.
- Both $K^+ \to \pi^+ v \bar{v}$ and $K_L^0 \to \pi^0 v \bar{v}$ experiments appear feasible collecting O(1000) events at the SM levels.

World leading experiments could begin at low 8-GeV beam power (20 kW) and transition to the high power Project-X era.