Project X Accelerator R&D Plan

Steve Holmes

P5 Meeting January 31, 2008

Outline

- Project X Facility Overview
- R&D Goals
- R&D Strategy
- Project X R&D Plan

Project X Facility Overview

Project X is a high intensity proton facility aimed at supporting a world leading program in neutrinos and rare decays. NOvA initially,

Project X Facility Overview Scope

- The R&D program supports a facility scope that includes:
 - A new 8 GeV, superconducting, H⁻ linac;
 - A new beamline for transport of 8 GeV H⁻ from the linac to the Recycler Ring;
 - Modifications to the Recycler required for 8 GeV H⁻ injection, accumulation, and delivery of protons to the Main Injector;
 - Modifications to existing beamlines to support transfer of 8 GeV protons from the Reycler to the Main Injector;
 - Modifications to the Main Injector to support acceleration and extraction of high intensity proton beams over the range 60-120 GeV;
 - Modifications to the NuMI facility to support operations at 2 MW beam power;
 - Modifications to the Recycler to support a new extraction system that will allow delivery of 8 GeV protons in support of a dedicated flavor program.

Project X Overview High Level Performance Goals

Project X Overview Provisional Siting

Page 6

Project X R&D Goals Program Goals

- The goal of the Project X R&D program is to provide support for a Critical Decision 1 (CD-1) in 2010, leading to a CD-2/3a in 2011.
 - Design and technical component development;
 - Fully developed baseline scope, cost estimate, and schedule for CD-2
 - Formation of a multi-institutional collaboration capable of executing both the R&D plan and the follow-on construction project.
- The primary technical goal is a complete facility design that meets the needs of the US research program, as established via CD-0.
 - -2 MW of beam power over the range 60 120 GeV,
 - simultaneous with at least 100 kW of beam power at 8 GeV.

Project X R&D Goals Technical Goals

- Complete preliminary design and cost estimate for Project X:
 - technical and conventional construction elements,
 - systems integration, and
 - installation and commissioning plan.
- A supporting technology development program targeting key accelerator physics and engineering challenges
- Alignment with the ILC and SRF programs:
 - Development of shared technologies to the benefit of both efforts
 Cavity/cryomodule design, rf sources, e-cloud, civil infrastructure
 - Project X linac designed to accommodate accelerating gradients in the range 23.6 – 31.5 MV/m (XFEL – ILC)
 - ➢ Final design gradient determined prior to CD-2.
- Preliminary identification of performance upgrade paths

Project X R&D Goals Management/Organization Goals

- Formation of a multi-institutional collaboration to carry out the Project X R&D program and to prepare a plan for construction.
- Development all project documentation and organizational structures required by DOE 413.3.
- Timeline:
 - 2008: CD-0
 - Form Project X R&D Collaboration
 - 2009:
 - Start project documentation (including CDR), and accompanying R&D program
 - 2010: CD-1
 - Finish CDR, form collaboration to undertake construction project
 - 2011: CD-2/3a
 - Establish project baseline (scope, cost, schedule)

Project X R&D Strategy Preliminaries

- Proton Driver Design Studies over 2002-2004
 - Director's Review in March 2005
- Project X Preliminary Report August 1, 2007
 - Delivered to Fermilab Directorate Long Range Steering committee
 - Reviewed by Fermilab Accelerator Advisory Committee
 - "We congratulate the Project X team on an innovative design...Project-X is especially suitable for Fermilab in the current scenario of a not well-defined schedule of ILC construction, because of synergies with ILC...The committee therefore very strongly supports the work that is planned for Project-X." http://projectx.fnal.gov/AACReview/ProjectXAacReport.pdf
- Project X Accelerator Physics and Technology Workshop Nov. 12-13, 2007
 - 175 attendees from 28 different institutions.

http://projectx.fnal.gov/Workshop/ProjectXWorkshopReport.pdf

Project X R&D Strategy Technical Elements Outline

- **<u>Requirements</u>** develop major system requirements
 - Eight major systems
 - 17 base requirements
 - 68 derived requirements
- **Issues** discuss issues arising from the requirements
- **Elements** define the elements of an R&D plan that
 - Addresses the issues arising from the requirements
 - Are directed towards a completion of Conceptual Design Report
- **Resources and Schedule** estimate:
 - The resources required to complete the R&D plan
 - The schedule required to complete the R&D plan

Note: The Project X R&D strategy assumes the existence of ILC, SRF, and HINS programs.

Project X R&D Strategy Major Project X Components

- A front end linac operating at 325 MHz.
- An ILC-like linac operating at 1300MHz.
- An 8 GeV transfer line and H- Injection system.
- The Recycler operating as a stripping ring and a proton accumulator.
- The Main Injector acting as a rapid cycling accelerator.
- A slow extraction system from the Recycler.
- 120 GeV Neutrino beamline.
- Civil Construction and Utilities
- Controls

Req. No.	Description	Req.	Unit	Reference Requirements
1.0	General			
1.1	120 GeV Beam Power	2.3	MW	
1.2	8 GeV Beam Power	360	kW	
1.3	8 GeV Slow Spill Beam Power	200	kW	
1.4	8 GeV Slow Spill Duty Factor	55	%	
1.5	120 GeV Availability	75	%	
1.6	8 GeV Availability	80	%	

Req. No.	Description		Unit	Refe	renœ R	equirem	nents
2.0	325 MHz Linac						
2.1	Average Beam Current	9	mA	1.2			
2.2	Pulse Length	1	mS	1.2			
2.3	Repetition rate	5	Hz	1.2			
2.4	325 MHz Availability	98	%	1.6			
2.5	Peak RF Ourrent	14.4	mA	2.1	2.11	2.13	2.14
2.6	Final Energy	420	MeV	3.6			
2.7	Energy Variation (rms)	1	%	3.10			
2.8	Bunch Phase jitter (rms)	1	degree	3.11			
2.9	Linac Species	H-		4.1			
2.10	Transverse Emittance (95% normalized)	2.5	π -mm-mrad	5.7	5.8		
2.11	Macro Bunch Duty Factor	67	%	5.10	5.12		
2.12	Macro Bunch Frequency	53	MHz	5.12			
2.13	Micro Pulse Length	10.4	uS	5.13			
2.14	Micro Pulse Period	11.1	uS	5.13			

Req. No.	Description	Req.	Unit	Refe	renœ R	equirem	nents
3.0	1300 MHz Linac						
3.1	Average Gradient (ILCportion)	26	MV/meter				
3.2	Average Gradient (S-ILCportion)	23	MV/meter				
3.3	Average Beam Current	9	mA	1.2			
3.4	Pulse Length	1	mS	1.2			
3.5	Repetition rate	5	Hz	1.2			
3.6	1300 MHz Availability	88	%	1.6			
3.7	Initial Energy	420	MeV	2.6			
3.8	Length (approx.)	700	meters	3.1	3.13		
3.9	Peak RF Current	14.4	mA	3.3	3.15	3.17	3.18
3.10	Linac Species	H		4.1			
3.11	Energy Variation (rms)	1	%	4.9			
3.12	Bunch Phase jitter (rms)	1	degree	4.9			
3.13	Final Energy	8	GeV	4.10			
3.14	Transverse Emittance (95% normalized)	2.5	π -mm-mrad	5.7	5.8		
3.15	Macro Bunch Duty Factor	67	%	5.10	5.12		
3.16	Macro Bunch Frequency	53	MHz	5.12			
3.17	Micro Pulse Length	10.4	uS	5.13			
3.18	Micro Pulse Period	11.1	uS	5.13			

Req. No.	Description	Req.	Unit	Refe	renœ R	equiren	nents
4.0	8 GeV Transfer Line						
4.1	Injection Stripping efficiency	98	%				
4.2	Length (approx.)	1000	meters				
4.3	Maximum average activation level	20	mrem/ hr				
4.4	Availability	98	%	1.6			
4.5	Momentum Aperture	+/-0.8	%	3.10			
4.6	Minimum Transverse Aperture	25	π -mm-mrad	3.13	4.3		
4.7	Maximum Dipole Field	0.05	Т	4.1	4.3		
4.8	Transfer Efficiency	99.99	%	4.3			
4.9	Final Energy Variation	+/-0.11	%	5.10			
4.10	Energy	8	GeV	5.1			

Req. No.	Description		Unit	Refe	renœ R	equirements	
5.0	Recycler						
5.1	Energy	8	GeV				
5.2	Storage Efficiency	99.5	%				
5.3	Average Recycler Beam Ourrent	0.6	А	1.2			
5.4	Availability	95	%	1.6			
5.5	Injection Rate	5	Hz	2.3			
5.6	Maximum Space Charge Tune Shift	0.05		5.2			
5.7	95% normalized transverse emittance	25	π -mm-mrad	5.6			
5.8	r.m.s. normalized transverse emittance	13	π -mm-mrad	5.6			
5.9	Bunchingfactor	2		5.6			
5.10	Longitudinal emittance per Bunch	0.5	eV-Sec	5.6	5.12		
5.11	Cyde Time	1.4	S	6.1			
5.12	RF Frequency	53	MHz	6.2			
5.13	Abort Gap Length	700	nS	6.3			
5.14	Peak Recycler Beam Ourrent	2.4	А	6.5			

Req. No.	Description	Req.	Unit	Reference Requirements		ents	
6.0	Main Injector						
6.1	120 GeV cyde Time	1.4	S				
6.2	RF Frequency	53	MHz				
6.3	Abort Gap Length	700	nS				
6.4	Acceleration Efficiency	99	%				
6.5	Main Injector Beam Current	2.4	А	1.1			
6.6	Final Energy	120	GeV	1.1			
6.7	120 GeV Beam Power	2.3	MW	1.1			
6.8	Availability	87	%	1.5			
6.9	Injection Energy	8	GeV	5.1			
6.10	Longitudinal emittance per Bunch	0.5	eV-Sec	6.2	6.11		
6.11	Space Charge Tune Shift	0.05		6.4			
6.12	95% normalized transverse emittance	25	π -mm-mrad	6.11			
6.13	r.m.s. normalized transverse emittance	13	π -mm-mrad	6.11			
6.14	Bunching factor	2		6.11			
7.0	8 GeV Slow Spill						
7.1	8 GeV Sow Spill Beam Power	200	kW	1.3			
7.2	Peak Spill Rate	280	x10 ¹² pps	1.3	1.4	7.5	
7.3	8 GeV Sow Spill Duty Factor	55	%	1.4			
7.4	8 GeV Availability	80	%	1.6			
7.5	Cycle Time	1.4	S	6.1			
7.6	Peak Recycler Beam Ourrent for slow spill	0.8	А	7.2			
8.0	120 GeV Targeting						
8.1	120 GeV Beam Power	2.3	MW	1.1			
8.2	120 GeV Availability	95	%	1.5			
8.3	Cyde Time	1.4	s	6.1			

Project X R&D Strategy 325 MHz Linac Issues

- No special accelerator physics issues are posed by a 420 MeV linac with this beam intensity.
- Development via the High Intensity Neutrino Source (HINS) program
 - 60 MeV front end demonstration based on scrf
- Technology choices
 - room temperature vs. superconducting
 - Upgrade path
- Beam duty cycle and machine availability requirements push the envelope of any existing H- ion source
- Superconducting triple-spoke accelerating cavity is outside the scope of the HINS program
 - RF power distribution and control
 - Cryomodules
 - Beam diagnostics

Project X R&D Strategy 325 MHz Linac Technical Elements

• FY08

- Basic accelerator physics design
- HINS vs. alternative technology study
- FY09
 - Basic machine design and technology decisions completed
 - Begin
 - Ion source development,
 - Triple-spoke cavity electromagnetic and mechanical design,
 - Material procurement,
 - Low level RF development

• FY10

- Ion source prototyping and testing
- Triple-spoke prototype fabrication,
- vector modulator and RF distribution system development
- FY11
 - Fabrication triple-spoke cavities
 - Ion source development,
 - RF power distribution system design development
 - Beam instrumentation
 - Complete design
 - Complete cost estimates.

Project X R&D Strategy 1300 MHz Linac Issues

- Project X 1.3 GHz linac is based on the ILC cryomodule design.
 - ~40 CMs required for Project X
 - ➢ Accommodate cavity gradients in the range 23.6 31.5 MeV
 - GDE is developing a standardized CM design as a high priority nearterm item, with goal of testing a complete 31.5 MeV/m CM by 2012.
 - ART plan calls for the assembly and testing of several CMs by 2012
 - Fermilab is playing a leading role in CM design, fabrication, and testing
- Project X has same average current as ILC (9 mA×1 msec×5 Hz)
 - Bunch structure is different
 - Beam test addresses significant, but not all, ILC issues.
- Project X construction will require a production rate of ~one cryomodule/month, with a procurement leadtime of <1 year.
 - Supported by SRF infrastructure program
 - Engage industry in a manner that leads to a cost effective design

Project X R&D Strategy 1300 MHz Linac Technical Elements

• FY08

- initiate conceptual linac design :
 - ➢ lattice
 - ➢ RF systems
- begin design of the S-ILC cavities
- FY09
 - Continue with conceptual linac design
 - Begin to prototype S-ILC tuners, couplers, and cavities
 - Initiate RF system test with first ILC-like cryomodule in concert with the ILC

• FY10

- Finish conceptual design of the linac
- Test dressed prototype S-ILC cavities
- Continue with RF system tests
- Begin design of the machine protection system
- FY11
 - Finish all prototype tests
 - Complete RF system and machine protection system design
 - Complete cost estimates

Aimed at test of complete rf unit in 2012

P5, *1/31/08 – S. Holmes*

Project X R&D Strategy 8 GeV Transfer Line Issues

- Control and mitigation of beam loss due to single particle loss mechanisms in the transport line.
- Uncontrolled losses in the injection region due to the injected and circulating beam interaction with the stripping foil.
- The stripping efficiency and lifetime of the injection foil, or
- The stripping efficiency of a laser stripping injection system.
- The collection of the stripped electrons and neutrals from the injection process.

Project X R&D Strategy 8 GeV Transfer Line Technical Elements

- Begin physics design
- Begin component specification for the Transfer line and the Injection system
- FY09
 - Finish physics design and component specification.
 - Begin component design of the chicane magnets, painting magnets, foil support and changer, electron catcher, power supply design, vacuum system design

• FY10

- Finish component design
- Initiate controls and instrumentation design
- Begin prototyping of the painting magnets, foil support and changer, electron catcher, and cryogenic beam pipe
- FY11
 - Finish prototyping
 - Begin and finish cost estimates.

Project X R&D Strategy Ring Issues

- Recycler Ring
 - Space Charge tune shift
 - Electron cloud instabilities
 - Storage efficiency

• Main Injector

- Space Charge tune-shift
- Electron cloud instabilities
- RF Power
- Beam loading
- Transition crossing

Project X R&D Strategy Ring Technical Elements

• FY08

- Begin design of a two harmonic RF system
- Run simulations for e-cloud (EC)
- Continue EC measurements in MI; begin in other rings (e.g. CESR, RHIC, CERN)
- Investigate the possibility of coating the beam pipe
- FY09
 - Select RF Frequency and finalize RF design
 - Begin RF system prototype
 - Continue with EC simulations and measurements
 - Begin beam coating prototype

• FY10

- Finish RF system prototype and begin testing
- Continue with EC simulations and measurements
- Coat two MI and Recycler dipoles in a service building and evaluate the results
- FY11
 - Finish high power RF system prototype and install in MI tunnel for beam tests
 - Finalize EC mitigation plan
 - Begin and finish cost estimates.

Project X R&D Strategy 8 GeV Slow Spill Issues

- Extraction system configuration: chromatic effects on the transverse phase space at the extraction Lambertson
- Lattice requirements
 - existing gradient magnet harmonics,
 - new powered harmonic elements,
 - modifications to the Recycler lattice.
- RF beam structure requirements
- Duty factor
- Speed of the extraction process
- Extraction point location
- Loss mitigation and shielding requirements

Project X R&D Strategy 8 GeV Slow Spill Technical Elements

• FY08

- Begin 1/3 and ½ integer extraction studies
- Develop bunch structure specifications
- FY09
 - Finish1/3 and ½ integer extraction studies
 - Decide on extraction strategy
 - Begin design of extraction devices
 - > Lambertson,
 - ➤ Septum
 - Harmonic Elements
 - Recycler Lattice modifications

• FY09

- Continue design of extraction devices
- Begin necessary prototype construction (septum)
- FY10
 - Finalize physics design
 - Finish design of extraction devices
 - Test Prototypes (septum)
 - Begin and finish cost estimates

Project X R&D Strategy Neutrino Beamline Issues

- Development of a proton target and magnetic horn system capable of handling 2.3 MW of beam power at 120 GeV
 - Project X will increase beam power by a factor of 5-6 beyond the original NuMI design.
 - Initial investigation suggest that the NuMI target hall could be upgraded to handle about 1-2 MW of beam power
 - > NuMI beamline was conservatively designed,
 - \geq Redundancy in the initial design.
- Reliability, maintainability, and uptime of the NuMI facility.
 - Limits on the decay pipe window
 - Residual radiation, airborne emissions, and ground water protection
 - Handling of radioactive components

Project X R&D Strategy Neutrino Beamline Technical Elements

- FY08
 - Target design begins.
 - Study of decay pipe window begins.
- FY09
 - Target design continues.
 - Magnetic horn design begins.
 - Module upgrades design begins.
 - Study of decay pipe window continues.
 - Study of decay pipe system.
 - Remote handling study begins.
- FY10
 - Target design concludes.
 - Magnetic horn design continues
 - Module upgrades designs conclude.

- FY10 (cont.)
 - Target chase cooling design begins.
 - Study of decay pipe window continues.
 - Hadron absorber design begins.
 - Remote handling study continues.
 - Radiological study begins.
 - Infrastructure design.

• FY11

- Magnetic horn design concludes.
- Target chase cooling design concludes.
- Study of decay pipe window concludes.
- Hadron absorber design concludes.
- Remote handling study concludes.
- Radiological study concludes.

Project X R&D Strategy Civil Construction Issues

- Existing design concept for Proton Driver facilities meets many Project X requirements
- Wetland mitigation options
- Re-use of existing utility capabilities?
- Re-use of existing cryo facilities?
- Large injection abort
 - Significant civil construction required
- Project X has significant utility infrastructure in common with ILC (power distribution, HVAC, cooling, cryogenics, etc.)
 - Involved Fermilab resident expertise can be shared between the ILC and Project X efforts.
 - ⇒ Opportunity for shared development of cost effective designs in these areas.

Project X R&D Strategy Civil Construction Technical Elements

- Update existing Proton Driver design
- Revise cost estimate to match revised scope
- Determine best approach for hiring of architect/engineer consultant
- FY09
 - Begin NEPA process
 - Apply for ACOE 404 wetlands permit
 - Perform architect/engineer selection to help with drafting and graphics for CDR work in this phase

• FY10

- Work through iterations of EA
- Finalize conceptual design and drawings
- Contract with A/E for T1 work
- Perform Construction Manager selection
- FY11
 - Perform preliminary design
 - Perform soil borings for facilities
 - Provide cost estimate and schedule information
 - Develop site preparation package
 - Begin advanced conceptual design for other construction packages

P5, *1/31/08 – S. Holmes*

Project X R&D Strategy Controls Issues

- Scale
 - One million controllable properties
 - Up to 200 system users
- Availability
 - 2500-hr MTBF (mean time between failures)
 - 5-hr MTTR (meant time to repair)
 - 15 hours downtime per year
- Machine Protection and Safety
- Legacy Constraints

Project X R&D Strategy Controls Technical Elements

• FY08

 Do the requirements and design to modernize the controls software infrastructure. This includes front-end software, central services, the applications framework, and the software build environment.

• FY09

- Machine Protection System R&D starts in parallel
- Work on the controls software infrastructure begins implementation.

• FY10

- Controls software infrastructure design and development is finished
- Begin system testing
- Development of the Machine Protection System and beam feedback system begins.

• FY11

- Complete the infrastructure upgrade
- New features are being designed and developed.
- The Machine Protection and Beam Feedback systems finished and tested

Project X R&D Plan Master Schedule

- Based on resource loaded schedule (RLS – see report for readable version)
- Covers FY2008-2011
- Incremental to ILC, SRF, HINS

• Major Milestones

CD-0 Approved	8/1/08
Start CD-1 Documentation	9/1/08
Complete CD-1 Document.	4/1/10
Start CD-2 Documentation	5/3/10
CD-1 DOE Review	6/1/10
CD-1 Approved	8/2/10
Complete CD-2 Document.	4/1/11
Start CD-3 Documentation	5/2/11
CD-2 DOE Review	6/1/11
CD-2/3a Approved	9/1/11

P5, *1/31/08 – S. Holmes*

Project X R&D Plan

Resource Requirements and Profile

Project X R&D Plan Resource Requirements and Profile

Personnel profile by skills types

Note: This includes total resources, not just Fermilab. Incremental to ILC, SRF, and HINS programs

Project X R&D Plan Budget Profile

		Project X R&D Plan Budget Profile								
]) ([(Dollar amounts in millions, fully burdened)								
	FY08	FY08 FY09 FY10 FY11 FY12 TOTAL								
SWF	\$6.7	\$10.5	\$19.1	\$26.3			\$62.6			
M&S	\$1.5	\$4.9	\$6.2	\$13.7			\$26.3			
TOTAL	\$8.1	\$15.5	\$25.4	\$40.0			\$88.9			
			Î	PED						
	CD	-0	CD-1		-2/3a					

Project X R&D budget profile

- Scientists not included
- Can produce this table with any combination of scientists in or out, FY08 or AY\$, burdened or unburdened
- Incremental to ILC, SRF, and HINS programs

Project X R&D Plan An Integrated Plan

<u> </u>	FY08	FY09	FY10	FY11	FY12	FY13
ILC C+CM	CM1	CM2	CM3 (Type IV)		CM4 rf unit syst.tst	
ILC RF Power		MBK n	PFN nodulator			
SRF Infra.			(NML complete		CAF complete (1 CM/month)
HINS			be	60 MeV am tests		
Project X		CDR	R FE Gradient basel	decision decision ine docs	rf unit sys.tst	
	CD-0		CD-1	CD-2/3a	3	

P5, 1/31/08 – *S*. *Holmes*

Page 38

Project X R&D Plan Collaboration Plan

Disclaimer: This is not formally agreed to, although institutions have been invited to comment as this has been developed.

- Intention is to organize and execute the R&D Program via a multiinstitutional collaboration.
 - Goal is to give collaborators complete and contained sub-projects, meaning they hold responsibility for design, engineering, estimating, and potentially construction if/when Project X proceeds.
 - Project X R&D Collaboration to be established via a Collaboration Memorandum of Understanding (MOU) outlining basic goals of the collaboration, and the means of organizing and executing the work.
 - It is anticipated that the Project X R&D Program will be undertaken as a "national project with international participation". Expectation is that the same structure of MOUs described above would establish the participation of international laboratories.

Project X R&D Plan Management Plan

- Fermilab responsible for management of the Project X R&D program.
 - Program managed by a Project X R&D Program Leader, assisted by a Program Team. Deliverables:
 - reviewable/defensible accelerator physics and engineering design, cost estimate, and schedule to achieve CD-2/3a;
 - ➢ including identification of possible upgrade paths;
 - ➢ organization of a supporting R&D program.
- Collaboration Council established for the primary purpose of advising/assisting the Project Leader in inter-laboratory coordination.
- Project X Technical Advisory Committee.
- Fermilab 1.3 GHz program managed and coordinated jointly via the Assoc. Director for Accelerators and the ILC Program Director.

Project X R&D Plan Institutional Expressions of Interest

- Goal of the November 2007 Project X Accelerator Workshop was to discuss accelerator physics and technology issues of Project X, and to explore possible areas of overlap and interest between potentially interested institutions.
 - Participation in the workshop included 175 individuals from 28 institutions in the U.S., Europe, and Asia.
- The Workshop report contains a record of discussions and a complete compilation of "expressions of interest" from the participating institutions.
 - Purpose of these EOIs is to provide an initial step in understanding how capabilities at interested institutions could be brought to bear in the R&D phase of Project X.

Summary

- Design concept exists for a facility capable of delivering in excess of 2 MW beam power over the energy range 60 – 120 GeV, simultaneous with 8 GeV beam power in the range 100 – 200 kW.
 - Major sub-system performance goals established
 - Potential upgrade paths to mulit-MW at 8 GeV exist
 - Design aligned with needs of ILC development
- R&D plan developed covering the period through CD2/3a (2011)
 - Integrates effort on Project X, ILC, and HINS
 - Resource plan exists
- Working towards organizing as a national project with international participation.