XENON and Other Cryogenic Noble Liquid Dark Matter Experiments

Elena Aprile
Physics Department and Columbia Astrophysics Laboratory
Columbia University

http://www.astro.columbia.edu/~lxel/XENON/
Plan for Talk

Cryogenic Noble Liquids: a brief review

LXe Based Detectors
XENON, ZEPLIN

LAr Based Detectors
WARP

Other LXe/LAr Detectors
Direct Detection Methods/Experiments

XENON, XMASS-II, ZEPLIN2, ZEPLIN3, WARP, ArDM

Double Phase (Xe, Ar)

Ge

Ge, Si

Al2O3, LiF, ...

CaWO4, BGO, ...

NaI, CaF2, LXe, LAr, ...

EDELWEISS

CDMS

CRESST

ZEPLIN1

XMASS

Mini-CLEAN

DAMA/LIBRA
Cryogenic Noble Liquids: Basic properties

- Suitable materials for detection of ionizing tracks:
 - Dense, homogeneous, target and also detector (ionization and scintillation)
 - Do not attach electrons
 - High electron mobility (except neon in some conditions)
 - Commercially easy to obtain and to purify (in particular, liquid Argon)
 - Inert, not flammable, very good dielectrics

<table>
<thead>
<tr>
<th>Element</th>
<th>Liquid Density (ρ/cm3)</th>
<th>Energy loss dE/dx (MeV/cm)</th>
<th>Radiation length X_0 (cm)</th>
<th>Collision length λ (cm)</th>
<th>Boiling point @ 1 bar (K)</th>
<th>Electron mobility (cm2/Vs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neon</td>
<td>1.2</td>
<td>1.4</td>
<td>24</td>
<td>80</td>
<td>27.1</td>
<td>high&low</td>
</tr>
<tr>
<td>Argon</td>
<td>1.4</td>
<td>2.1</td>
<td>14</td>
<td>80</td>
<td>87.3</td>
<td>500</td>
</tr>
<tr>
<td>Krypton</td>
<td>2.4</td>
<td>3.0</td>
<td>4.9</td>
<td>29</td>
<td>120</td>
<td>1200</td>
</tr>
<tr>
<td>Xenon</td>
<td>3.0</td>
<td>3.8</td>
<td>2.8</td>
<td>34</td>
<td>165</td>
<td>2200</td>
</tr>
</tbody>
</table>

Cost:
- ϵ
- $\epsilon\epsilon$
- $\epsilon\epsilon\epsilon$
Cryogenic Noble Liquids: Basic challenges

- **Cryogenics**: Efficient, Reliable and Cost Effective Cooling systems
- **Safety**: hazard of large volumes of cold liquids in confined space underground
- **Detector Materials**: compatible with low radioactivity and high purity requirements
- **Intrinsic Radioactivity**: Ar-39 and Ar-42 for LAr and Kr-85 for LXe
- **Light Detection**:
 - Efficient, cost effective VUV PMTs, directly coupled to the liquid → low T and high P capability + high purity compatibility; effective VUV reflector materials
 - Wavelength shifters → visible PMTs (high QE) but worry about mixing of shifter with liquid with different effect on singlet and triplet states decay time
 - Light can be absorbed by H2O and O → especially for LXe, absorption cross section of water largest around Xe wavelength → continuous purification
- **Charge Detection**:
 - requires <<1ppb (O2 equivalent) for electron lifetime > 1 ms → commercial purifiers and continuous circulation → easier to achieve in colder LAr → for E~1kV/cm residual presence of CO, N2O can reduce yield as attachment cross section increases w/ field
 - Electric fields >1kV/cm required for max yield from mip (for alphas and nuclear recoils, field dependence much weaker) → detecting a small charge signal in presence of HV → a challenge even when using charge extraction from liquid-to-gas (2-phase)
Ionization/Scintillation Mechanism in Noble Liquids

Kubota et al. 1979, Phys. Rev.B

\[Xe \rightarrow Xe^+ + e^- \]

\[Xe + Xe^* \rightarrow 2Xe + h\nu \]

\[Xe^+ + Xe \rightarrow Xe_2^+ \]

\[Xe_2^+ + e \rightarrow Xe^{**} + Xe \]

\[Xe^{**} \rightarrow Xe^* + \text{heat} \]

\[Xe + Xe^* \rightarrow Xe_2^* \rightarrow 2Xe + h\nu \]

\[\lambda \sim 128_{\text{LAr}} \]

\[\lambda \sim 175_{\text{LXe}} \]

\[\lambda \sim 77.5_{\text{LNe}} \]
Figure 3.9: Scintillation decay curves in liquid argon are plotted. The experimental results show for both excitation (obtained at 6 kV/cm) and recombination components the presence of two different contributions, one characterized by a $\tau_s \approx 6$ ns decay time and one by a $\tau_t \approx 1500$ ns decay time [63].
Particle ID by Pulse Shape Discrimination

A. Hitachi PRB 27 (1983) 5279
PMTs for Cryogenic Liquids

- Initial studies of LA/LXe scintillation done with visible PMTs coupled to transparent windows coated with appropriate wavelength shifters (POPOP, sodium salicylate, etc.)

- Development of PMTs for cryogenic operation starts in 1996 for LXe (MEG, LXeGRIT, XMASS, XENON) with Hamamatsu and later for LAr (ICARUS, WARP) and LXe (ZEPLÍN) with EMI

- Challenge: Choice of Photocathode a) Bialkali :K-Cs-Sb, Rb-Cs-Sb show steep increase in sheet resistance at low temperature b) Multialkali +Na show less dependence on T..but more difficult to make

- Development of Metal Channel Dynode Structure by Hamamatsu → evolution of compact (4 cm long) PMTs with improved response at 178 nm, working at −100 C and 5 bar (used by MEG and XENON early prototypes)

- XENON has now adopted a square geometry Metal Channel PMT (R5900-Mod) with higher QE (>20%) and lower activity

2” - 3” Glass or Quartz windows

New WARP PMTs (EMI Type D749-D750)

Bialkali photocathode

2” - 1” Quartz window
LXe & LAr for Dark Matter Direct Detection

- **Liquid Xenon**
 - Large A (~131): good SI case (\(\sigma \sim A^2\)) but low threshold a must
 - Presence of \(^{129}\text{Xe} (26.4\%)\) and \(^{131}\text{Xe} (21.2.4\%)\) good for SD
 - No long-lived radioisotopes. Kr85 fraction to ppt level proven
 - Excellent stopping power for compact, self-shielding geometry
 - ‘Easy’ cryogenics at -100 C
 - Efficient scintillator (80% of NaI) with fast time response
 - Excellent charge and light yields (\(W_p = 22.4\) eV; \(W_e = 15.6\) eV for mip; For NR, QF ~0.2 but large and field independent charge yield
 - Background Discrimination Methods: Charge and Light ratio plus 3D event localization

- **Liquid Argon**
 - A=40 good for higher mass WIMPs
 - No odd isotopes for SD
 - \(^{39}\text{Ar}\) at ~1 Bq/kg require rejection > 10^7
 - Not so “Easy” Cryogenics at ~186 C but easier to purify
 - Larger volumes required to compensate low Z and density \(\rightarrow\) larger cryostat (cost) and LAr mass but cost of raw Ar is cheap
 - ‘Less light and charge than LXe for mip but much larger scintillation efficiency’ for NR, QF~0.8.
 - Background Discrimination Methods: Charge and Light ratio plus 3D event localization plus Light PSD
The XENON Experiment: Overview

- **Modular design:** 1 ton LXe (XENON1T) in ten modules (XENON100). Module is a 3D position sensitive dual-phase (liquid/gas) XeTPC with 100kg active Xe target.

- **Event-by-event discrimination** of nuclear recoils from electron recoils (>99.5%) down to 16 keVr from:
 - a) simultaneous detection of scintillation (S1) and ionization (via proportional scintillation S2)
 - b) 3D event localization

- **XENON10 Phase:** TPC with 15 kg active target at Gran Sasso Lab as of March, 2006. Shield under construction. Integrate detector with shield by end May. **Physics run June, 2006 →**

- **XENON100 Phase:** design/construction in FY07 and FY08. Commission underground and start physics run within 2008.

XENON funded by NSF and DOE
XENON Dark Matter Goals

XENON10 (2006-2007):
10 kg target ~2 events/10kg/month

Equivalent to CDMSII Goal for mass >100 GeV
(Current CDMS limit is 10 x above this level)

XENON10 underground to establish performance of dual phase TPC and to guideto design optimization for XENON100

XENON100 (2007-2009):
100 kg target ~2 events/100kg/month
(similar projection for WARP-140 kg)

XENON-1T (2009-2012?):
1 ton (10 x 100 kg? larger modules?)
10^{-46} cm² or ~1 event/1 tonne/month

Dark Matter Data Plotter
http://dmtools.brown.edu
Extraction of electrons from liquid to gas

- **WIMP or Neutron**
- **Gamma or Electron**
- **Electron recoil**
- **Nuclear recoil**

Diagram:
- PMT Array
- Proportional Gas Xe
- Liquid Xe
- Direct
- Gamma
- Bottom PMT Array

Mathematical equation:
\[(S_2/S_1)_{\text{wimp}} \ll (S_2/S_1)_{\text{gamma}}\]
Recent Highlights from XENON R&D

LXe Scintillation Efficiency for Nuclear Recoils
- The most important parameter for DM search
- No prior measurement at low energies

LXe Ionization Efficiency for Nuclear Recoils
- XENON concept based on simultaneous detection of recoil ionization and scintillation
- No prior information on the ionization yield as a function of energy and applied E-field

Development of XENON10 Experiment for Underground Deployment
- Validated Cryogenics, HV, DAQ systems with 6kg prototype (XENON3)
- Demonstrated low energy threshold and 3D position reconstruction
- Installed/tested larger (15 kg) detector in same cryostat (Dec 05- Feb06)
- XENON10 equipment shipped to Italy on March 2, 2006
Scintillation Efficiency of Nuclear Recoils

Columbia and Yale

2.4 MeV neutrons

Use pulse shape discrimination and ToF to identify n-recoils

\[E_r \approx E_n \frac{2M_n M_{Xe}}{M_n + M_{Xe}} (1 - \cos \theta) \]

Nuclear Recoils Ionization Yield and Field Dependence

Columbia +Brown and Case (2 independent measurements)

Aprile et al., astro-ph/0601552, submitted to PRL
LXe Response to Nuclear and Electron Recoils

5 keVee energy threshold = 10 keV nuclear recoil
event waveforms

3.8 kV/cm, AmBe

20050328T2209_00011#4142
S1: 21 pe (11.8 keVee)
S2/S1: 72.4
Event type: neutron

3.8 kV/cm, Cs-137

20050329T0007_00002#2641
S1: 42 pe (23.6 keVee)
S2/S1: 155
Event type: gamma

20050328T2209_00011#341
S1: 60 pe (33.7 keVee)
S2/S1: 41.1
Event type: neutron

20050329T0007_00002#1789
S1: 90 pe (50.6 keVee)
S2/S1: 263.1
Event type: gamma
Neutron/Gamma Discrimination

Electron recoils rejection efficiency 98.5% down to 20keVr, at 2kV/cm with 50% nuclear recoils acceptance.

Efficiency limited by charge loss at edge of detector due to field non uniformity

\[\gamma \text{ leakage mainly from edge events} \]

improvement expected with XY event localization in a 3D TPC with optimized electric field shaping

\[\text{Teflon (PTFE)} \]

\[\text{Neutron Inelastic }^{19}\text{F } 110 \text{ keV} \gamma \]

\[40 \text{ keV} \]

\[\text{ELASTIC Nuclear Recoil} \]

\[\text{Gas Xenon} \]

\[\text{Liquid Xenon} \]

\[\text{P. Majewski} \]

\[\text{L. Viveiros/ R. Gaitskell} \]
XY Position Reconstruction and Sensitivity: XENON3 TPC

\[\chi^2(x, y) = \sum_{i=1}^{21} \frac{[S_i - s_i(x, y)]^2}{\sigma_i^2} \]

dge event with long drift time

S1

S2

\(\sigma \approx 2 \text{ mm} \)
XENON3 Data: Edge events can be well identified

5 mm radial cut clearly reduces gamma events leaking into the nuclear recoils region (DD- 2.5 MeV neutrons irradiation)

XY position reconstruction of 122 keV Co-57 gammas from side
XENON10: Cryostat Assembly

- Pulse tube cryocooler
- Re-condenser
- LXe Active
- Gas Region
- PMTs (top)
- PMTs (bottom)
- Vacuum Cryostat
XENON10 Cryogenic System

“Built-in” cryocooler

Pulse Tube Cryocooler:

Advantages: Just switch on!
- Precise temperature and pressure control
- L_2N_2-Free operation
- Quiet, maintenance free for long time operation
- XENON10 machine in use since 2003
- Stability within $\pm 0.025\, \text{K}$

Can afford:
- up to $\sim 200\, \text{W} @ 165-170\, \text{K}$
XENON10: Detector Assembly

- 89 Hamamatsu R5900 (1” square)
- 20 cm diameter, 15 cm drift length
- 22 kg LXe total; 15 kg LXe active

Top PMT Array, Liquid Level Meters, HV-FT

Bottom PMT Array, meshes, PTFE Vessel

LN Emergency Cooling Loop

PMT Base (Cirlex)
XENON10: Underground at LNGS

Occupancy

XENON
HALL A
HALL B
HALL C
MI R&D
Borexino
ICARUS
LVD
DAMA
WARP
OPERa
HDMS
GENIUS-TF
CRESST2
Cobra
CUORE
CUORICINO
LUNA2
XENON10: Underground at LNGS
Summary: XENON10 Backgrounds

Monte Carlo studies of Radioactivity (Background Events) from:

- Gamma / Electron
 - Gammas inside Pb Shield
 - PMT (K/U/Th/Co)
 - Vessel: Stainless Steel (Co)
 - Contributions from Other Components
- Xe Intrinsic Backgrounds (incl. 85Kr)
- External Gammas - Pb Shield
- Rn exclusion
- Detector Performance/Design
 - Gamma Discrimination Requirements
 - Use of xyz cuts instead of LXe Outer Veto
- Neutron Backgrounds
 - Internal Sources: PMT (α,n)
 - External: Rock (α,n): Muons in Shield
 - Punch-through neutrons: Generated by muons in rock

- NOTE: Active Muon Shield Not Required for XENON10 @ LNGS
 - Neutron flux from muon interaction in Pb shield \ll Target Level

[Background Modeling U. FLORIDA / BROWN/COLUMBIA]
XENON10 - Fiducial Volume

- Stainless Steel Cryostat & PMTs (background in 5-25 keVee) [Dominant BGs]
 - Stainless: MC using value of 100 mBq/kg 60Co
 - Based on stainless samples screened to date - 4x higher than originally assumed = but faster assembly
 - PMTs - 17.2/<3.5/12.7/<3.9 mBq/kg (U/Th/K/Co) - 89 Low activity 1” Hamamatsu tubes
 - Increased Bg from Increased Number of PMTs / trade off with increased position info. = Bg diagnostic

Radius (10 cm) - Depth (15 cm) Event Rates (log(/keV/kg/day)) In XENON10

Application of 1 cm surface cut
15 kg -> 10 kg LXe

Original XENON10 Goal
Electron Recoils <0.14 /keVee/kg/day
(assumes 99.5% electron recoil rejection)

Currently estimate that we will be above original goal by ~2-3x
XENON10 Shield Construction - LNGS

Red-Shield Dimension Blue-Ex-LUNA Box Dimension

Clearance to Crane Hook (after moving crane upwards) 20 mm

Brown Design / LNGS Engineering
40 Tonne Pb / 3.5 Tonne Poly
Low-Activity (\(^{210}\)Pb 30 Bq/kg) inner Pb &
Normal Activity (\(^{210}\)Pb 500 Bq/kg) Outer Pb

Construction Underway: Contractor
COMASUD – Mid May Expect
Completion of Installation

LNGS (Ex-LUNA) Box Dimensions are critical constraints for shield - expansion of shield to accommodate much larger detector difficult

Inner Space for XENON10 detector
900 x 900 x 1075(h) mm

P5 - Fermilab - 19 April 2006

Elena Aprile, Columbia University
The XENON10 Collaboration

Columbia University
Elena Aprile (PI), Karl-Ludwig Giboni, Sharmila Kamat, Maria Elena Monzani, Guillaume Plante*, and Masaki Yamashita

Brown University
Richard Gaitskell, Simon Fiorucci, Peter Sorensen*, Luiz DeViveiros*

University of Florida
Laura Baudis, Jesse Angle*, Joerg Orboeck, Aaron Manalaysay*

Lawrence Livermore National Laboratory
Adam Bernstein, Norm Madden and Celeste Winant

Case Western Reserve University
Tom Shutt, Eric Dahl*, John Kwong* and Alexander Bolozdynya

Rice University
Uwe Oberlack, Roman Gomez* and Peter Shagin

Yale University
Daniel McKinsey, Richard Hasty, Angel Manzur*, Kaixuan Ni

LNGS
Francesco Arneodo, Alfredo Ferella*

Coimbra University
Jose Matias Lopes, Luis Coelho*, Joaquim Sai
The US ZEPLIN Group: U. Rochester, SMU, TA&MU, UCLA

ZEPLIN II Design Principle

- PM
- PM
- PMT
- LHe
- e
- e
- γ
- n-
- r
- (S2)
- (S1)
- gas
- liquid
- PTFE

Data shown 3-D Event Distribution

45kg Xenon (Fiducial 32kg)
ZEPLIN II Electron Lifetime and Light Collection in Liquid Xenon

- Liquid purification well understood
- Greater than 1-ms electron lifetime typical
- 1.6 photoelectron/keV at zero field

103pe/122keV

^{57}Co

Light yield v Purity

1000

Light yield, pe/keV (zero field)

Purity (µs)

5 day

1000

e-lifetime (µs)

Pump switched on

- Active Recirculation
- Passive Recirculation

Elena Aprile, Columbia University
- **89% signal**
- **4-sigma cut** 3.2×10^{-5}
- **Very clean waveform**
- **Excellent recoil discrimination from S2/S1**
- **Possible neutron double scatter overlap S2**
- **AmBe Run & Dark Matter run**
- **S2/S1 vs S1 Plot**
- **Background Discrimination**

Elena Aprile, Columbia University
ZEPLIN II Operation Underground at Boulby Mine, UK

- Detector fully operational
- Physics data taking in progress (expect 300kg-day mid May)
- Data analysis in progress
After the completion of the first Physics run we will continue with R&D to push the limits of performance of ZEPLIN II to optimize the technology for the one-ton detector ZEPLIN IV.

A possible ton scale ZEPLIN IV design
Tentative approval by SNOLAB (or US DUSEL)

Current and Future
ZEPLIN Goals
WARP: The Motivation

- **TARGET**: Atomic number 40
 - No loss of coherence at high energies
 - Complete retention of gold plated events (60-120 keV)

- **WIMP CANDIDATES IDENTIFICATION**: highest discrimination between nuclear recoils and β/γ-like background
 - 39Ar, 0.8 Bq/kg \rightarrow need 10^7 rejection against betas (for 140 kg detector)
 - Projected discrimination exceeds 10^8 at 30 keV

- **LOTS OF SIGNAL**: Highest Light Yield for Nuclear Recoils!
 - 32 photons/keV
 - Ar quenching 0.8
 - Xe quenching 0.2
WARP - WIMP Dark Matter Search with LAr

Two simultaneous criteria to discriminate potential WIMP recoils from backgrounds:

1. Simultaneous detection of prompt scintillation (S1) and drift time-delayed ionization (S2) in LAr, after electron extraction in gas and local multiplication:
 - Pulse height ratio S2/S1 is strongly dependent from columnar recombination of ionizing tracks.
 - 3D reconstruction of the event from drift time and PMT localization of centroid of S2 within 1 cm³.

2. Pulse shape discrimination of primary scintillation:
 - Wide separation in rise times between fast (≈ 10 ns) and slow (≈ 1.6 µs) components of the emitted UV light. This is a unique feature of Argon.

- Scintillation yield is ≈ 2 phel. / keV$_{\text{ion}}$
- Trigger Threshold is 5 keV$_{\text{ion}}$
- WIMP Analysis threshold is $\approx 15 \div 20$ keV$_{\text{ion}}$

- Technique established with operation of 3.8-kg prototype in LNGS since 2004
Double Discrimination in WARP

- S_1 = primary (prompt) liquid scintillation signal
- S_2 = secondary (delayed) gas scintillation signal (proportional to ionization)

- **Minimum ionising particles:** high S_2/S_1 ratio (~100) + slow S_1 signal
- **α particles and nuclear recoils (R-like events):** low (<30) S_2/S_1 + fast
Neutron-Induced Recoils

50-100 keV

Combination of two discrimination methods

Pulse Shape Discrimination

Counts

10^3

10^5

WIMP Search 40 kg*day

50-100 keV >10^6 events
3.8-kg Prototype: Physics Results

- 3.8-kg prototype equipped with seven 2” PMs designed to work at LAr temperature
- Scaled version of the 100 liters detector, with field-shaping electrodes and gas to liquid extraction and acceleration grids
- Equipment contained in a high-vacuum tight container immersed into an external, refrigerating, liquid argon bath
- LAr Purity kept stable by means of argon recirculation: continuous and stable operation during several months
- No selection of materials: background left intentionally high to study ID and rejection power with high statistics

Galbiati promised to give plot on Tuesday

Preliminary Results from xx kg-day exposure (y weeks long data taking Feb-Mar 2006) Full discussion of data next week IFAE 2006
WARP 140-kg detector

- Sensitive mass 140 kg (100 liters LAr)
 - Adds third discrimination: 3-D event localization (within 1 cm³) by means of
 - Drift time recording (vertical axis)
 - Centroid of PM’s secondary signal amplitudes (horizontal plane)

- Unique feature: 4pi active VETO system, 9 tons active LAr
 - tags and measures the neutron-induced background with an ID-factor ≈ 99.99%

- In construction, commissioned within the end of 2006

- Designed also to host a 1 ton detector

- 140-kg stage funded INFN+NSF
 - INFN 2.0 M€ (plus personnel)
 - NSF 650 k$

- Funds cover inner detector, 200 of 400 veto tags and measures the neutron-induced background with an ID-factor ≈ 99.99%
WARFP 140-kg Final Considerations

- Argon excellent candidate for WIMP Dark Matter Search

- Achieved the most advanced and best performing technology for a (WIMP-induced) recoil identification. Identification power of Ar recoils vs. γ/β events at 30 keV E_{ion} threshold:
 - 1 in 10^3 events from S2/S1
 - 1 in 10^5 events from Pulse Shape Discrimination

- 140-kg detector commissioned within 2006
 - Will bring further upgrade on light yield. Background minimized
 - Big jump (x100) in sensitivity for WIMP Dark Matter Searches in 2007
 - Active neutron coincidence will...
Other Cryogenic Liquid Detectors for DM

- **XMASS** (Scintillating LXe Calorimeter - 800 kg) → Solar Neutrino/Dark Matter → Kamioka
 See Y. Koshio talk at http://cryodet.lngs.infn.it/agenda/agenda.htm

- **XMASSII** (Double Phase LXe-15 kg) → Dark Matter → Kamioka
 See S. Suzuki talk at http://cryodet.lngs.infn.it/agenda/agenda.htm

- **ArDM** (Double Phase LAr- 1Ton) → Dark Matter → Canfranc
 See L. Kaufmann talk at http://www.physics.ucla.edu/hep/dm06/talks.html

- **Mini-CLEAN** (Scintillating LNe/LAr? Calorimeter - 100Kg) → Solar Neutrino/Dark Matter → SNOLAB/Homestake?
Additional Material
XENON Budget Profile

<table>
<thead>
<tr>
<th></th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>XENON10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equip. (2M$)</td>
<td>0.6</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF Pers. (FTE)</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Pers. + Ops. ($M)</td>
<td>1.4</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Equip. ($M)</td>
<td>0.3</td>
<td>0.7</td>
<td>0.9</td>
<td>1.3</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL ($M)</td>
<td>1.7</td>
<td>2.6</td>
<td>2.8</td>
<td>3.2</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>XENON1T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF Pers. (FTE)</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Pers. + Ops. ($M)</td>
<td>0.6</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Equip. ($M)</td>
<td>0.2</td>
<td>0.6</td>
<td>0.8</td>
<td>1.1</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL ($M)</td>
<td>0.8</td>
<td>1.5</td>
<td>1.7</td>
<td>2.0</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>STARTUP/FELL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF Pers. (FTE)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NON-US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF Pers. (FTE)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pers. + Ops. ($M)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Equip. ($M)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL ($M)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF Pers. (FTE)</td>
<td>22</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Pers. + Ops. ($M)</td>
<td>2.4</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Equip. ($M)</td>
<td>0.6</td>
<td>1.4</td>
<td>1.8</td>
<td>2.5</td>
<td>2.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3.0</td>
<td>4.6</td>
<td>5.0</td>
<td>5.7</td>
<td>5.4</td>
<td>3.2</td>
</tr>
</tbody>
</table>
XENON10 LNGS Schedule

<table>
<thead>
<tr>
<th>Activity Name</th>
<th>Start Date</th>
<th>Finish Date</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>November</td>
<td>December</td>
</tr>
<tr>
<td>NEVIS LABS (US)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON0</td>
<td>2005 06 30</td>
<td>2005 12 01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upgrade 0->10</td>
<td>2005 12 01</td>
<td>2005 12 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Taking (A)</td>
<td>2006 01 01</td>
<td>2006 01 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Taking (B)</td>
<td>2006 02 10</td>
<td>2006 02 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSFER TO LNGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packing</td>
<td>2006 02 20</td>
<td>2006 02 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td>2006 02 28</td>
<td>2006 03 07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNGS (Italy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box 2 Commissioning</td>
<td>2006 02 01</td>
<td>2006 03 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON10 - Commissioning / Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Installation (w/o shield, Box 2)</td>
<td>2006 03 01</td>
<td>2006 03 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Testing</td>
<td>2006 03 16</td>
<td>2006 04 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation ex-LUNA Box</td>
<td>2006 05 01</td>
<td>2006 05 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS RUN-1</td>
<td>2006 06 01</td>
<td>2006 06 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON10 - Fabrication / Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design/Fabrication</td>
<td>2006 07 01</td>
<td>2006 08 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reassemble/Test XENON10 Detector</td>
<td>2006 09 01</td>
<td>2006 09 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYSICS RUN-2</td>
<td>2006 10 01</td>
<td>2006 12 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ex-LUNA BOX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning</td>
<td>2006 02 01</td>
<td>2006 04 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power System (ARCBALEN DO)</td>
<td>2006 03 16</td>
<td>2006 03 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW BACKGROUND SHIELD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shield Engineering Design</td>
<td>2006 12 01</td>
<td>2006 02 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shield Construction (COMASUD)</td>
<td>2006 03 21</td>
<td>2006 05 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shield Installation</td>
<td>2006 04 09</td>
<td>2006 06 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XENON100+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Studies</td>
<td>2006 07 01</td>
<td>2006 09 01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal Submission Funding for FY Aug 07:08 - 09:10</td>
<td>2006 09 29</td>
<td>2006 09 29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MonteCarlo Simulation of XENON10 Position Sensitivity
Columbia

48 PMTs on top, 41 on bottom
8 inch diameter, 6 inch drift length
about 15 kg liquid xenon

Assumptions for GEANT4 Simulation

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE reflectivity</td>
<td>92%</td>
</tr>
<tr>
<td>Stainless steel reflectivity</td>
<td>20%</td>
</tr>
<tr>
<td>Light absorption length</td>
<td>100 cm</td>
</tr>
<tr>
<td>Rayleigh scattering length</td>
<td>30 cm</td>
</tr>
<tr>
<td>Liquid xenon index of refraction</td>
<td>1.61</td>
</tr>
<tr>
<td>W value of light for electron recoil</td>
<td>21.6 eV</td>
</tr>
<tr>
<td>Gas gain for proportional light</td>
<td>200</td>
</tr>
<tr>
<td>Nuclear recoil scintillation efficiency</td>
<td>$0.06 E_n^{0.34}$</td>
</tr>
<tr>
<td>Quenching of $S1$ at 1 kV/cm for nuclear recoil</td>
<td>95%</td>
</tr>
<tr>
<td>Quenching of $S1$ at 1 kV/cm for electron recoil</td>
<td>50%</td>
</tr>
<tr>
<td>Nuclear recoil ionization yield at 1 kV/cm [e-]</td>
<td>$15.4 E_n^{0.643}$</td>
</tr>
<tr>
<td>Charge collection for electron recoils at 1 kV/cm</td>
<td>65%</td>
</tr>
<tr>
<td>PMT quantum efficiency</td>
<td>20%</td>
</tr>
<tr>
<td>PMT collection efficiency</td>
<td>70%</td>
</tr>
</tbody>
</table>

Fitting from measurements by Columbia and XENON Collaborators (E_n in keVr), see:
- Aprile et al., astro-ph/0601552
XENON10: Expected Position Resolution

S2 signal for each PMT from simulation, convoluted by S2 resolution and statistical fluctuation of photoelectrons in PMTs

10 keV nuclear recoils

Position resolution (σ) is less than 3 mm for 10 keV nuclear recoil events

Reconstructed positions obtained by the minimum chisq method (same as for XENON3)

Position reconstruction for XENON10: a 122 keV gamma event from side (data)
XENON10: Identify Multiple-step Events

Most of the multiple scattering events can be easily identified by drift time separation ($\Delta Z > 2$ mm).

Events with $\Delta Z < 2$ mm can be identified by the chisq value from XY position reconstruction.

One neutron event with two steps (5 keVr each) separated by ΔL.

Events with two steps separated by more than 3 cm in XY can be efficiently identified.
Kr removal - Case

- 85Kr - beta decay, 687 keV endpoint.
 - Goals for 10, 100, 1000 kg detectors: Kr/Xe < 1000, 100, 10 ppt.
 - Commercial Xe (SpectraGas, NJ): ~ 5 ppb (XMASS)
- Chromatographic separation on charcoal column
 - Different adsorption of Kr and Xe -> separation in time for steady flow through column.

10 Kg- charcoal column system at Case

ili, Columbia University
Production for XENON10

- Purification better $> 10^3$. Adequate for XENON10.
- System throughput now at 1.8 kg/day with $\sim 50\%$ up-time. Project: 26 kg purified end April.

Checked in Case detector: Purity for charge drift not affected by Kr removal

Production cycling

- Post-production purity check
- Anticipate \sim ppt sensitivity
• Processing speed: 0.6 kg/hour
• Design factor: 1/1000 Kr/1 pass
• Purified Xe: Off gas = 99:1

<table>
<thead>
<tr>
<th></th>
<th>Boiling point (@2 atm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe</td>
<td>178.1K</td>
</tr>
<tr>
<td>Kr</td>
<td>129.4K</td>
</tr>
</tbody>
</table>

Raw Xe: ~3 ppb Kr

Operation @ 2 atm

Lower (178K)

~3m

~1%

Off gas Xe: 330 ± 100 ppb Kr (measured)

Higher (180K)

~99%

Purified Xe: 3.3 ± 1.1 ppt Kr (measured)
Low Backgrounds / DAQ

- Rick Gaitskell
- Particle Astrophysics Group, Brown University, Department of Physics
- (Supported by US DOE HEP)
- see information at
 http://www.astro.columbia.edu/~lxe/XENON/
 http://xenon.brown.edu/
89 channel DAQ System – Implementation (Brown)

Sample Pulse – Drift Distance: 15cm = 75µs

Cluster Being Installed in LNGS Computer Center

Tape Archive

Digitizers/DAQ

Brown

Cluster Data Analysis

Remote Backup

100 MHz VME

10 ns/sample

Front End Analogue Electronics

XENON10: 48 Top PMTs + 41 Bottom PMTs

Fast ADC

8ch

Fast ADC

8ch

Fiber

Channel

G5 XRaid

5.6 TB Storage

PC#1

Data Acquisition

Event Compression

Gbit Ethernet

Single phe threshold triggering

n≥2 coincidence demonstrated

(necessary for best threshold goal >16 keVr, S1~0.8 phe/keVrecoil)

Event Compression

Case Western
XENON10 Neutron Backgrounds

- Main Neutron Backgrounds
 - (alpha,N)/Fission Neutron from Rock
 - (alpha,N) Neutron Flux: 10^{-6} N/(sec·cm2)
 - Muon Induced Neutrons from Pb Shielding
 - Neutron Yield in Pb: 4×10^{-3} N/(muon g cm$^{-2}$)
 - Muon Flux at Gran Sasso: 1 muon / (hour m2)
 - Event rates for above types of Neutron sources are reduced below XENON10 goal by ~1/10x.
 - Low Energy Neutrons are currently moderated by 20cm internal poly. (XENON100 would require muon veto for Pb events + external poly)

- High Energy Neutrons from Muons in Rock (see table)
 - Depth necessary to reduce flux
 - LNGS achieves XENON10/100 goal
 - Traditional Poly shield is not efficient in moderating High Energy Muon-Induced Neutrons

<table>
<thead>
<tr>
<th>Goal (Rates for Current Shield Design)</th>
<th>DM NR Signal Rate Xe @ 16 keVr</th>
<th>Soudan 2.0 kmwe</th>
<th>Gran Sasso 3.0 kmwe</th>
<th>Home-stake 4.3 kmwe</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Energy Neutron Relative Flux (from muons)</td>
<td>x1</td>
<td>X1/6</td>
<td>x1/30</td>
<td></td>
</tr>
<tr>
<td>XENON10 ($\sigma \sim 2 \times 10^{-44}$ cm2)</td>
<td>400 μdru</td>
<td>x 20</td>
<td>x 120</td>
<td>x 600</td>
</tr>
<tr>
<td>XENON100 ($\sigma \sim 2 \times 10^{-45}$ cm2)</td>
<td>40 μdru</td>
<td>x 2</td>
<td>x 12</td>
<td>x 60</td>
</tr>
<tr>
<td>XENON1T ($\sigma \sim 2 \times 10^{-46}$ cm2)</td>
<td>4 μdru</td>
<td>x 0.2</td>
<td>x 1</td>
<td>x 6</td>
</tr>
</tbody>
</table>

TABLE: Integ. WIMP Signal ($m_w=100$ GeV) / HE Neutron BG evt
[~1/2–2x uncertainty in actual HE neutron BG]

DM Signal/HE Neutron BG needs to be >>10 to ensure WIMP differential signal spectrum can be observed in adequate recoil energy range (compared to flatter differential neutron bg spectrum)
1T Detector can use “thicker” shield (e.g. water/active) to reduce HE neutrons for even greater reach
Comparison of High Energy (HE) Neutron Shielding

- Additional reduction in HE Neutron BG possible using thick water shield…
 - Also consider active shields
- But Maintain Adequate Safety Margins since
 - High Energy Neutron Flux still being studied - x2 (at least?) uncertainties
 - Shield Introduces extra BG systematic to worry about / Shield under-performance quite possible if too large a reduction factor aimed for.

CONCLUSION:
- Depth is Important
- Shield upgrade can provide some reduction in HE neutron BG, but don’t over-depend on shield performance (and give up on depth)
- Change in shield type may also be attractive for other reasons. E.g. water - lower cost for large shield geometries with low gamma bg. E.g. active - additional veto for (a,n) neutrons.

![Energy Histogram for Xe detector (63kg) inside different Shields](chart)

Dark Matter Differential Spectra for 100 GeV WIMP with $\sigma \sim 10^{-46}$ cm2 in Xe, Ge, Ar & Ne targets

Nuclear Recoil Spectrum in Xe due to events caused by high energy neutrons penetrating shield of
(i) 40 cm poly/20 cm Pb / (ii) 2 m thick water / (iii) 4 m thick water
Dark Matter Sensitivity

- **CDMSII @ Soudan**
 - (Run ’04) 1.5 kg Ge before cuts
 - Exposure: Net after cuts:
 - 20 kg-day (Run ’03) + 34 kg-day (Run ’04)
 - WIMP <0.05/kg/day >10 keVr
 - 1 Neutron from 23 cm Pb shield due to muons - vetoed in shield - 8 cm poly inside Pb reduces neutrons by ~7x
 - (Effective depth 6.5x shallower that of LNGS - so would not expect 5 muon generated neutron events in WARP data)

- **WARP (Latest Data)**
 - (Run ’05) 3.2 kg Ar before cuts
 - Exposure: 35 kg-days
 - 5 evts 20-40 keVr: 0.15/kg/day
 - 0.53/kg/day equiv in Ge >10 keVr
 - Factor 10 above CDMSII current

- **XENON10 (90% CL limit)**
 - assuming zero evts >16 keVr, eq. Ge>10keVr
 - LXe 14 kg inner -> 10 kg fiducial (1 cm surface cut)
 - Match current WARP: 11 hours live
 - Match current CDMS II: 4.6 days live
 - XENON10 Goal: 46 days live
Noble Liquids

<table>
<thead>
<tr>
<th>Property</th>
<th>He</th>
<th>Ne</th>
<th>Ar</th>
<th>Kr</th>
<th>Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Number (Z)</td>
<td>2</td>
<td>10</td>
<td>18</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td>Atomic Weight (A)</td>
<td>4.00</td>
<td>20.18</td>
<td>39.95</td>
<td>83.80</td>
<td>131.29</td>
</tr>
<tr>
<td>Boiling Point T_b at 1 atm [K]</td>
<td>4.22</td>
<td>27.1</td>
<td>87.3</td>
<td>119.9</td>
<td>165.0</td>
</tr>
<tr>
<td>Melting Point T_m at 1 atm [K]</td>
<td>0.95</td>
<td>24.6</td>
<td>83.8</td>
<td>115.8</td>
<td>161.4</td>
</tr>
<tr>
<td>Gas Density at 1 atm & 298 K [g/l]</td>
<td>0.16</td>
<td>0.82</td>
<td>1.63</td>
<td>3.43</td>
<td>5.40</td>
</tr>
<tr>
<td>Gas Density at 1 atm & T_b [g/l]</td>
<td>16.6</td>
<td>9.56</td>
<td>5.77</td>
<td>8.89</td>
<td>9.99</td>
</tr>
<tr>
<td>Liquid Density at 1 atm & T_b [g/cm³]</td>
<td>0.12</td>
<td>1.21</td>
<td>1.40</td>
<td>2.41</td>
<td>2.94</td>
</tr>
<tr>
<td>Critical Temperature T_c [K]</td>
<td>5.19</td>
<td>44.4</td>
<td>150.8</td>
<td>209.4</td>
<td>289.7</td>
</tr>
<tr>
<td>Critical Pressure P_c [atm]</td>
<td>–</td>
<td>–</td>
<td>48.3</td>
<td>54.3</td>
<td>57.6</td>
</tr>
<tr>
<td>Critical Density [g/cm³]</td>
<td>–</td>
<td>–</td>
<td>0.54</td>
<td>0.91</td>
<td>1.10</td>
</tr>
<tr>
<td>Dielectric Constant of Liquid</td>
<td>–</td>
<td>–</td>
<td>1.51</td>
<td>1.66</td>
<td>1.95</td>
</tr>
</tbody>
</table>
ZEPLIN III
(Coimbra, Edinburgh, ICL, ITEP, RAL, Rochester, Texas, UCLA)

- 8kg fiducial mass
- 31 PMTs in liquid
- 3.5 cm drift depth
- 0.5 cm electroluminescent gap
- reverse field region
- position sensitivity
- open plan – no surfaces
Summary
by T. Sumner (Imperial College) @ CryoDet Conf., March 06

- **ZEPLIN II is operating in Boulby mine.**
 - Full depth operation
 - Final in-situ calibrations ongoing

- **ZEPLIN III is up and running.**
 - Performance so far is as expected.
 - Some indication of higher photon yield than expected in xenon.
 - Further surface evaluation and optimisation in progress – another 3 months

- **FP 7 Design Study proposal for ton scale – ELIXIR – Loi submitted to ILIAS/ApPEC**

- **FP7 Single Project proposal for ZEPLIN III deployment - LoI submitted to ILIAS/ApPEC**