SciBooNE (E954) update

Hide-Kazu TANAKA
Columbia University

Mar 27, 2008 PAC meeting at Fermilab
Outline

• SciBooNE experiment
 – Data taking status
 – Detectors

• Status of physics analyses

• Run plan

• Summary
SciBooNE Collaboration

• Universitat Autonoma de Barcelona
• University of Cincinnati
• University of Colorado, Boulder
• Columbia University
• Fermi National Accelerator Laboratory
• High Energy Accelerator Research Organization (KEK)
• Imperial College London
• Indiana University
• Institute for Cosmic Ray Research (ICRR)
• Kyoto University
• Los Alamos National Laboratory
• Louisiana State University
• Purdue University Calumet
• Universita degli Studi di Roma "La Sapienza and INFN"
• Saint Mary's University of Minnesota
• Tokyo Institute of Technology
• Universidad de Valencia

5 countries 17 institutions

Spokespeople:
M.O. Wascko (Imperial), T. Nakaya (Kyoto)

Mar 18, 2008 @London
SciBooNE Experiment
SciBooNE Experiment
(K2K-SciBar detector at FNAL Booster Neutrino Beam line)

- Precision measurement of ν & $\bar{\nu}$-bar cross sections at ~1GeV — Important for T2K and other oscillation experiments

- **SciBar:**
 - Originally K2K-near detector
 - Shipped to FNAL

- **BNB:** Intense & low energy ν beam
 - E_ν good match to T2K
 - ν and $\bar{\nu}$ beam

- **MiniBooNE** near detector
Data taking status

- Projected Protons On Target (POT): 2E20
 - ~1 year run
- Total collected POT so far: 1.48E20
 - ν: 9.4E19 (goal: 1E20)
 - $\bar{\nu}$: 5.4E19 (goal: 1E20)
- Averaged detector live time fraction: 94%

Data taking is ongoing.

![Graph showing data taking status with POT values and months](data.png)
SciBooNE Detectors
SciBooNE Detectors

SciBar

ν beam

Muon Range Detector (MRD)

Electron Catcher (EC)
SciBar Detector

- Fully active target & tracking detector
 - Extruded scintillators with WLS fiber readout
 - 2.5 x 1.3 x 300 cm3 cell
 - ~15,000 channels
- Total 15 tons, Fiducial volume: ~10 tons
- Distinguish a proton from a pion by dE/dx

Detector performance (SciBooNE cosmic ray data)

- Light yield for MIP:
 ~20 p.e./ 1.3cm
- Hit finding efficiency; ~99.9%
Electron Catcher (EC)

- EM calorimeter
- Electron, gamma ID
- 1mm scintillation fibers in the grooves of lead foils
- 2 planes (total 11X₀)
- Expected resolution 14%/√E

![dE/dx distribution for cosmic ray muons](image)

SciBooNE cosmic data

E dep. of MIP in EC ~100MeV

Muon Range Detector (MRD)

- Measure μ momentum with range
 - momentum up to 1.2GeV/c
- Iron Plate
 - 2” thick x 12 planes
- Scintillator Plane
 - 13 planes alternating horizontal and vertical planes

![Hit finding efficiency~99%](image)

SciBooNE cosmic data

Mean efficiency: mean of |y| < 100 cm
Status of Analyses

- Neutrino data (no $\bar{\nu}$ data in this talk)
- 7.7×10^{19} POT is used
- Preliminary results
 - No systematic uncertainties yet
- MC sample: NEUT event generator
- All MC sample normalized by # of MRD match events (see later slides)
Physics Topics

Several analyses are in progress

• Charged Current
 – CC inclusive: Y. Nakajima (Japan)
 – CC-QE: J. Alcaraz (Spain), J. Walding (UK)
 – CC-$1\pi^+$: K. Hiraide (Japan)
 – CC-π^0: J. Catala (Spain)

• Neutral Current
 – NC-π^0: Y. Kurimoto (Japan)
 – NC-elastic: H. Takei (Japan)

• ν_μ disappearance: K. Mahn (US)

8 PhD students are working on analyses
(+ 2 already graduated; C. Mariani (PhD) and C. Giganti (graduate), (Italy))
Physics Topics

Several analyses are in progress

- **Charged Current**
 - CC inclusive: Important for ν_μ disappearance
 - CC-QE: Important for ν_μ disappearance
 - CC-$1\pi^+$:
 - CC-π^0: J. Catala (Spain)

- **Neutral Current**
 - NC-π^0: Important for ν_e appearance
 - NC-elastic: H. Takei (Japan)

- ν_μ disappearance: K. Mahn (US)

8 PhD students are working on analyses
(+ 2 already graduated; C. Mariani (PhD) and C. Giganti (graduate), (Italy))
Charged Current analyses

• CC-inclusive, CC-QE, CC-1π⁺
Signature of **CC** event at SciBooNE

- **Muon = SciBar-MRD matched track**

CC-QE

CC-1π (resonance)

SciBar-MRD match sample:
- CC purity: 96%
- Cosmic ray background: <0.5%
Muon distributions

Sample: events μ stopped inside the MRD
(MC samples: normalized by # of MRD match events)

Reconstructed θ_μ

Reconstructed P_μ

DATA/MC

Larger angle in data

Slightly higher P_μ
Event kinematics

Reconstructed E_ν (assume CCQE)

Reconstructed Q^2 (assume CCQE)

$E_{\nu}^{\text{rec}} = \frac{m_n E_\mu - m_n^2 / 2}{m_n - E_\mu + P_\mu \cos \theta_\mu}$

Assume CC-QE

μ angle is important for ν energy reconstruction at SciBooNE (and T2K as well)
Independent Check on μ angle

- ν events inside MRD
- (SciBar not used for this sample)

Data/MC disagreement is not caused by detector effect.

??Physics??
Independent Check on μ angle

- ν events inside MRD
- (SciBar not used for this sample)

Data/MC disagreement is not caused by detector effect.

??Physics??

Continue to work to understand muon distribution

Reconstructed $\cos{\theta}$

Entries 80220

Preliminary

$\cos{\theta}_\mu$

θ_μ

SciBar
EC
MRD
Muon track
CC-QE and CC-nonQE
CC-QE and non-QE separation

Sample: SciBar-MRD match event & 2 track

QE/non-QE separation by 2nd track kinematics.

$\Delta \theta_p$: Opening angle between observed 2nd track and expected proton track assuming CCQE.

$\mu (P_\mu, \theta_\mu)$

Observed 2nd track

$\Delta \theta_p$

Preliminary sample (<25 deg)
- Purity: 74%

Non-QE sample (>25 deg)
- Purity: 84%
Muon distributions
with QE and non-QE samples

CC-QE
QE Purity: 74%

CC-nonQE
Non-QE Purity: 84%

- μ angle discrepancy is due to non-QE events??

![Data/MC](DATA/MC)

Preliminary

!BG from EC/MRD
CC-$1\pi^+$ analysis
CC-1\(\pi^+\) (\(\nu+N\rightarrow\mu+\pi+N'\))

- **Signature:** muon + pion (2 MIP tracks)
 - Short proton track

- **Apply PID to 2nd track** (\(\pi\) or \(p\)) of non-QE sample to separate CC-\(\pi\) from other interactions.

dE/dx distributions

- **Muons**
- **Protons**

MIP confidence level

- **Proton mis-ID as pion = 7.2%**
 - (Pion track efficiency = 74%)
CC-1\(\pi^+\) \((\nu+N\rightarrow\mu+\pi+N')\)

2-track, \(\mu+\pi\), non-QE-like

\(P_\mu\)

\(\theta_\mu\)

Reconstructed \(E_\nu\)

Reconstructed \(Q^2\)

CC-1\(\pi\):
- CC-resonance \(\pi\)
- CC-coherent \(\pi\)
- CC-multi \(\pi\)

655 events,
CC-1\(\pi^+\) Purity: 66% (MC)

(resonance)
Neutral Current Analysis

NC-π^0
NC-π0 \((\nu+N \rightarrow \nu+\pi^0+N')\)

Event signature:
- No muon = No SciBar-MRD match track
- All tracks contained in SciBar

- In order to select NC-π0
 - Chose: 2 isolated tracks
 - Reject: \(\mu, \pi^+, p\)
NC-π0

\[\nu+N \rightarrow \nu+\pi^0+N' \]

846 events selected

EMShower

Histo: MC

- **NC\(\pi^0\) (19%)**, **CC\(\pi^0\) (17%)**
- Proton (19%)
- Muon (17%)

Applying cuts: Trk distance, Muon (by Michel e), Proton (by PID with dE/dx)

Data

- **EM shower**
- **Muon**
- **Proton**
- **Charged Pion**
- **Other BG**
Run Plan
Switch Horn Polarity ($\nu \rightarrow \bar{\nu}$)

- **Total POT so far (ν mode):** 9.4×10^{19} (at Mar 22)

 (Projected POT for ν: 1×10^{20})

 - Delivered POT: 1×10^{20}! \textcopyright Thanks AD!!

 - For physics: ~0.06×10^{20} left

 - ν mode data taking complete before Apr 14

- **Will switch horn polarity April 14**

 - MiniBooNE spokespeople agreed to switch horn polarity on April 14.

 - BNB Machine Coordinator and Horn experts also agreed with the date.

 - Expected duration: ~1 week
data taking and end of run

\[\bar{\nu} \] data taking: \(4.6 \times 10^{19}\) POT

Horn switch (Apr 14 - 21)

\(\bar{\nu}\) data taking complete:
- October (~6 months with ~1Hz)
- July (~3 months with ~2Hz)

※ AD trying to send beam to BNB with 2Hz
 (but not clear yet)
Summary

• SciBooNE Experiment
 – Precision measurement of ν and $\bar{\nu}$ cross section at $\sim 1\text{GeV}$
 – Data taking have been started June, 2007
 • Through Aug. 2007: Antineutrino mode
 • Started Oct. 2007: Neutrino mode
 – Data taking is going smoothly

• Run plan:
 – Horn polarity will be switched ($\nu \rightarrow \bar{\nu}$) on April 14.
 – Reach projected POT ($\nu + \bar{\nu}$: $2E20$) in this summer
 • Expected: in July with 2Hz or October with 1Hz

• Several physics analyses are in progress.
 – First results in this summer.
Backup
ν events timing distribution

- Beam window: 2usec (1.6us beam spill)

- Requiring SciBar-MRD match, cosmic ray background contamination <0.5%

SciBar-MRD match sample: CC purity: 96%
Vertex and # of tracks
Sample: SciBar-MRD track matched event

SciBar-MRD matched trk (Muon track)

X, Y

Z

ν beam dir.

SciBar EC MRD

Vertex

of tracks from vtx

X-vertex

Y-vertex

Z-vertex

Preliminary

Entries 23737

ν CC QE
ν CC resonantπ
ν CC coherentπ
ν CC other
ν NC
anti-ν
BG from EC/MRD

Preliminary

Preliminary

Preliminary

Preliminary