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Not a Discussion of 
Production Computing….

Simulated CMS Higgs Event SDSS Probing G-Lensing.
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Computing R&D Central to 
Fermilab’s Future Program

• Tightly coupled computing:
Unraveling the present through Lattice QCD.  

• Simulating & Analyzing the present and future:
Adventures in Accelerator Simulation, evolution 
of C++, mathematical libraries for the field. 

• Enabling Technologies:
Grid Computing, Networks, Mass Storage, 
Compute-Intensive Electrical Engineering.
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Lattice QCD Drivers & Successes
Enabling access to 
the CKM matrix Probing QCD directly.
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Realizing the QCD Action on the 
Lattice

•Lattice techniques key to 
connect measurements to 
underlying quark & gluon 
interactions.  

•Two enabling technologies 
supported by the DOE:  
Tightly coupled commodity 
PCs and tightly coupled 
custom processors. 

Gluon action visualization courtesy:  Pr. D. Leinweber CSSM, 
University of Adelaide
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Custom Processors 
optimized for QCD 
calculations.

Commodity PCs 
clustered with high 
performance networks.



SciDAC Prototype Clusters
• Jefferson Lab (http://lqcd.jlab.org)

– 256 node single 2.66 GHz Xeon, 3-D gigE mesh (9/2003)
• Pr. Fodor's gigE mesh machines have had a huge impact 

on recent designs
– 384 NODE SINGLE 2.8 GHz Xeon, 4-D gigE mesh (now)

• $1700/node including networking

• Fermilab (http://lqcd.fnal.gov)
– 128 dual 2.4 GHz Xeon, Myrinet (1/2003)
– 32 dual 2.0 GHz Xeon, Infiniband (7/2004)
– 128 single 2.8 GHz P4, Myrinet (7/2004)

• $900/node, reused Myrinet from 2000
– 260 single 3.2 GHz P4, Infiniband (2/2005)

• ~ $900/node + Infiniband ($880/node) 7
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QCDOC
• “QCD on a Chip”   (http://phys.columbia.edu/~cqft/)
• Designed by Columbia University with IBM

– in many ways, a precursor to Blue Gene/L
• Based on special Power PC core:

– ~ 500 MHz G4 with 1 GFlops double precision
– 4 MB of embedded DRAM
– 12 bidirectional, 1 Gbit/sec serial links
– 2.6 GB/sec external memory interface
– fast ethernet

• Architecture:
– PPC cores connected in 6-D torus
– up to 20K processors
– up to 50% of peak (~ 5 TFlops from 10K cpus)
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Performance Trends – Single Node
• Processors used:

– Pentium Pro, 66 MHz FSB

– Pentium II, 100 MHz FSB

– Pentium III, 100/133 FSB

– P4, 400/533/800 FSB

– Xeon, 400 MHz FSB

– P4E, 800 MHz FSB

• Performance range:
– 48  to  1600 MFlop/sec

– measured at 12^4

• Doubling times:
– Performance:  1.88 years

– Price/Perf.:  1.19 years !!
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Performance Trends - Clusters
• Clusters based on:

– Pentium II, 100 MHz FSB

– Pentium III, 100 MHz FSB

– Xeon, 400 MHz FSB

– P4E (estimate), 800 FSB

• Performance range:
– 50  to  1200 MFlop/sec/node

– measured at 14^4 local lattice 
per node

• Doubling Times:
– Performance: 1.22 years

– Price/Perf:  1.25 years
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Predictions
• Early 2006:

– 4.0 GHz P4E
– 1066 MHz FSB
– PCI-Express
– Infiniband
– $900 + $600

(system + network 
per node)

– 1.9 GFlop/node, 
based on faster CPU 
and higher memory 
bandwidth
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The Future, USQCD: United States Lattice 
Gauge Theory Computational Program

• USQCD is a new 
initiative starting 
FY06.  

• Fermilab is providing 
project management 
and leading roles  in 
technical and scientific 
management

• Scope: $2M/yr HEP & 
$0.5M/yr NP.
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Simulating Present and Future 
Accelerators.

• Simulation of many particles in full phase 
space requires specialized parallel codes.

• “Synergia” is a software framework that 
provides a tightly coupled coding 
environment with accurate simulation of 
instrumentation.  

• Evolving to full end-to-end simulations, 
adopting techniques from experimental HEP. 
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Case Study:  The Fermilab Booster
• Fully 3D space-charge
• For high-precision simulations 

use 33x33x257 grid and 
~1,000,000 particles

• Periodic boundary conditions –
periodic/long beam

• Multi-turn injection 
• 6-D PhS matched beam 

generation utilities
Multi-bunch modeling in 3D

FNAL Booster simulations

follow 5 200 MHz Linac 

micro-bunches in a 

37.8 MHz PhS slice.
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Computational Performance

t A
N

B NPerformance model:

parallel computing required

Code ported to

supercomputers

(NERSC) and parallel 

PC clusters

for a FNAL Booster

simulation:

~100 turns/hr on 512 procs
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The FNAL Booster

• Rapid cycling, 15 Hz
400 MeV → 8 GeV

• 24 FOFDOOD cells, 
total length 474.2 m

• RF 37.7 → 52.1 Mhz
• Injection/capture ~ 2 ms
• Multiturn injection, typically

12x0.035 mA = 0.42 mA
• Here focus on first few 

hundred turns
1973:  “Staff members continue to improve Booster Performance.” 
2005…….
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Some Instrumentation:  Booster Ion 
Profile Monitor (IPM) Detector

• Turn-by-turn beam profiles in 
horizontal and vertical planes

• Response affected by beam 
charge

• We have done detailed 
theoretical and experimental 
work on calibration
Phys. Rev ST AB 6:102801, 
2003

Field generated by beam charge 
smears measured beam profiles 
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Smeared Synergia vs data profiles

Measured IPM Profile 
well modelled by 
Synergia Profile.

Non-Gaussian “Halo” 
component of IPM 
Profile well modelled. 
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Future Directions for Synergia

• Electron cooling for the Fermilab collider 
complex. 

• Beam-Beam effects at the ILC interaction 
point.  

• Space charge effects in the ILC damping 
rings.  

• Electron cloud effects in the Main 
Injector/Proton-Driver.



20

CS-Intensive Engineering:  
A Billion Pixels in Space

•Validation of Flash 
Memory designs.

•Development of novel 
nearly lossless data 
compression algorithms. 

• Development of FPGA 
based data compression.
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Enabling Technologies:  
Grid, Networks & Storage

Our former centralized 
computing model doesn’t 
scale to future need.

Institutions have invested 
in IT, leveraged among 
local stakeholders. 

The challenge ahead is to 
globally leverage these 
resources.  
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CMS

2.5-10 Gbps

Tier 4

Tier 1

Tier2 Center

Online System

AcceleratorCenter 
PBs of Disk; 
Tape Robot

FNAL CenterIN2P3 Center INFN CenterRAL Center

InstituteInstituteInstituteInstitute 

Workstations

~100-1500 
MBytes/sec

0.1-10 Gbps
Tens of Petabytes by ~2008.
An Exabyte ~5-7 Years later.Physics data cache

~PByte/sec

~2.5-10 Gbps

Tier2 CenterTier2 CenterTier2 Center
~2.5-10 Gbps

Tier 0 +1

Tier 
3

Tier2 Center Tier 
2

Experiment

Tier0(A)/(Σ Tier1)(B)/(Σ Tier2)      ~1:1:1

A GRID We Need…Soon!
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http://www.opensciencegrid.org



Data Challenge

10 GE CMS Robust Service Challenge
Oct/Nov 2004 Disk

to
disk...

– CMS robust service 
challenge sustained 2.5 
Gb/s for weeks

– SC2004 = 7.5 Gb/s 
sustained

Enabling Technology:  Network 
R&D on the “Starlight” Link.
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300Mb/s
(24 hr avg.)

1/5 - CERN CastorGrid transfers to
        FNAL overflow inbound OC12

1/8 -  rerouted to overflow link

1/24 -  WestGrid traffic
           rerouted to
           overflow link

Production ES-Net 
OC-12 Link is 
saturated!
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Program Need Outstrips Current 
Capacity…   
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Local Network
Infrastructure

Local Network
Infrastructure

Internet

LambdaStation
LambdaStation

St
or

a g
e

sy
st

em
s Storag e

s yst em
s

Advanced
Research Network

ASCR funded R&D project.  Addresses the 
last-mile problem of connecting resources  
to high bandwidth WANs.
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Core Grid Middleware:  Storage 
Resource Management

(SRM)

Protocol Development.  Focus on facility 
interoperability.  Real collaborative success:  
LBL(Disk Resource Manager), JLAB(JLAB 
Storage Manager),  FNAL-DESY(Dcache),  
International Lattice Data Grid.  Grass roots 
effort with some key explicit SciDAC support.  
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Performant Data Grids for HEP as part 
of the broader community

• We are working  with Computer Science research and 
development teams (Condor, Globus) to develop the 
capabilities and performance for Grids for HEP

• We are working  together with Nuclear Physics, 
Astrophysics, and Bioinformatics scientists on a shared 
infrastructure.

• We are contributing  to Grid standards and services 
through developing to our experiment needs and 
contributing to the common program of work for Grid 
Security, Storage, Operations, Workload management 
etc.
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Open Science Grid Consortium
is the Means

• Building on success of Grid3 and continued 
collaboration with GriPhyn, iVDGL, PPDG. 

• Collaboration between many Lab Facilities and 
University IT groups, experiments,  computer science 
groups etc.

• Collaborate and encourage Interoperability with other 
Grids in the US - TeraGrid, Campus Grids such as 
GLOW, GRASE etc.

• US LHC commitment to present their resources to OSG 
and to work in a common shared environment. Close 
working relationship with LCG and EGEE in Europe.

• Interest from Korea, Taiwan, Brazil collaborators.
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Conclusions

• Lattice QCD now a precise tool. Computing 
Research enabled this development, and will 
ensure an incisive future. 

• Tightly coupled accelerator simulations with 
integrated instrumentation modelling will be a  
key element in  realizing future machines. 

• Enabling technologies of Grid, Networking & 
Storage are thriving through vigorous 
collaboration across a broad span of stakeholders. 
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