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Recent big progress with unquenched improved
staggered fermions.

I | | | | |
.| o
Several groups .| -
compared their simplest - | 3M= My =
lculat; W‘ i—-— IMp, — My :w
~ calculations. 10% . (1P — 18] 5
disagreement quenched e T(LD - 15) >
| Y(2P — 15) -
— T
tew per cent - | TEso1g L
agreement unquenched. & 0 TP —18) s
I .
e 1 1.1 09 1 1.1
LQCD/Exp’t (ny = 0) LQCD/Exp't {nf = 3)

C.T.H. Davies et al., Phys.Rev.Lett.92:022001,2004,
hep-lat/0304004.

What about slightly more complicated quantities?
Do other light quark methods agree?
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The progress has been reported in nice articles in

Physics Today and Nature.
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For almost thirty years precise numerical studies of
nonperturbative QCD, formulated on a space-time lat-
tice, have been stymied by our inability to include the
effects of realistic quark vacuum polarization. In this
paper we present detailed evidence of a breakthrough
that may now permit a wide variety of nonperturbative
QCD calculations including, for example, high-precision
B and D meson decay constants, mixing amplitudes, and
semi-leptonic form factors—all quantities of great im-
portance in current experimental work on heavy-quark
physics.  The breakthrough comes from a new dis-
cretization for light quarks: Symanzik-improved stag-
gered quarks [1, 2, 3,4, 5, 6, 7, 8].

arXiv

Quark vacuum polarization is by far the most expen-
sive ingredient in a QCD simulation. It is particularly dif-
ficult to simulate with small quark masses, such as u and
d masses. Consequently, most lattice QCD (LQCD) sim-
ulations in the past have either omitted quark vacuum
polarization (“quenched QCD”), or they have included
effects for only u and d quarks, with masses 10-20 times
larger than the correct values. This results in uncon-
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news and views

Lattice window on strong force

Lattice Quantum Chromodynamics

Comes of Age
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W particle

Bottom quark

B meson

A long-awaited breakthrough has been made in lattice quantum
chromodynamics — a means of calculating the effect of the strong force
between sub-atomic particles that could, ultimately, unveil new physics.

I he fundamental particles called quarks
exist in atom-like bound states, such

Electron

Anti-neutrino

Up quark

——— Anti-quark

——Gluon

Electron

Anti-neutrino

Pion

Figure 1 Bottom’s up. a, An idealized representation of the decay of a free bottom quark into an up
quark. In the standard model of particle physics, the process occurs through the weak force, mediated
by a Wparticle, and also produces an electron and an anti-neutrino. b, In the real world, however,
there is no such thing as a free quark. Instead, a bottom quark exists in a bound state with other
quarks — such as in a Bmeson, bound by the exchange of gluons to an anti-quark. Gluons and quark
pairs are constantly emitted then reabsorbed; only a fraction of this ‘sea’ of particles is shown here.

¢, So the realistic picture of the decay of a bottom quark is complex. The B meson — a bottom quark
and anti-quark pair — becomes a pion (an up quark and an anti-quark), but the route is obscured by
the mass of gluons and quarks (of which, again, only a fraction are shown). Calculating the details of
the process is fiendishly complicated. But new advances in lattice quantum chromodynamics mean
that precise theoretical correction factors can be worked out, and the problem effectively reduced to

the simple process shown in a.

would be no matter in the Universe today. So
how did that asymmetry arise?

If heavy particles that existed in the early
Universe decayed preferentially into matter
over antimatter, that could have created the
matter excess. In the standard model, two
types of quark, bottom and strange, do decay
asymmetrically. But this effect alone s far too
small to account for the asymmetry. How-
ever, there are many theories that predict
the existence of other, massive particles that
could readily produce the asymmetry. And

~.nature.com/nature

©2004 NaturePublishing Group

because of the connection between asym-
metry and mass, these theories also address
other puzzles, such as why electrons are
almost 10,000 times lighter than bottom
quarks.

Searching for evidence of these particles
can be done directly or indirectly: powerful
accelerators, reaching ever higher energies,
could create these mysterious particles; or
thereis the precision approach of looking for
subtle deviations in the properties of known
particles, influenced by the unknown. If
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These are examples of “golden quantities of
lattice QCD”: single stable-hadron processes.

Many of the most
important deliverables

of lattice QCD are in
this class and a special
focus of our group’s work:

M. Ciuchini hep-ph/0307195.

B B bar, Bs BS bar mixing,

B, D leptonic and
semileptonic decay.
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Example of current work : D—=mnlv.

. lin[solid],log[dashed],stag_log[dotted] fits (4 points)
Cleo-c will measure - . . . .

fry /D—=mlv and l ¢
fHy/DKIV to 2%. Interesting and rare - .
CKM independent test of lattice heavy- .
light methods. il

One-loop perturbative calcutions (in progress)

will leave 8-10% perturbative uncertainties.

Goal: make all other uncertainty significantly

smaller than this. T e

f DK=0.75

+

f+Dpi=o.63

(Preliminary!)

M. Okamoto et al., at Lattice 2003, hep-1at/0309107.
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Fermilab lattice cluster effort
is led by Don Holmgren.

The clusters are

currently housed in the
New Muon Lab.

The 176 node Pentium 4 cluster.
-100 GFlops.
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2000: 80 node Pentium 111
700 MHz duals, Myrinet.

2002: 48 node Pentium 4
2 GHz duals, Myrinet.

2002: 128 node Pentium 4
2.4 GHz duals, Myrinet.

2004 plan: 256 node 3.2 GHz, Infiniband? 350 GF.
2005: 512 node 4 GHz, Infiniband? $1M. 1 TF.

2006: 1024 node § GHz, Infiniband? $1.sM. 3 TF.
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US “Lattice QCD Executive Committee” (Sugar, chair,
Brower, Christ, Creutz, Mackenzie, Negele, Rebbi, Sharpe,

Watson) reports to DoE on plans and needs of US lattice
QCD.

At February, 2004 HEPAP meeting, Bob Sugar, in a well-
received talk, reported the “absolute minimum support

required for health of field”.

Our answer: $3M/year.
In FYo4/05, § TF QCDOC + 1TF cluster.

DoE-HEP response: $2M/yr.

Discussions are ensuing.
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