Windows on the Universe: New Questions on Matter, Space, and Time

Michael Witherell

August 15, 2003
Modern Physics

Two scientific revolutions that are the foundation of modern physics occurred in the first half of the 20th Century.

These breakthroughs occurred when physicists tried to extend the laws of physics beyond everyday experience.
Relativity

To describe things moving very fast requires the theory of relativity.

Special Relativity
 - We cannot catch up with light.
 - Mass is a form of energy.
 \[E = m \, c^2 \]

General Relativity
 - GR encompasses gravity and describes the expanding universe and black holes.

Einstein in 1905, at the age of 26
Quantum Mechanics

To describe things that are very small requires quantum mechanics.

The Heisenberg uncertainty principle:

- The more precisely we know the position of an object, the worse we know its momentum.

To describe anything as small as an atom requires the use of quantum mechanics.

Heisenberg in 1925, at the age of 24
Our present theory of particle physics: The Standard Model

This is a grand intellectual achievement of the second half of the 20th Century.

The theory is based on relativistic quantum field theory (QFT).

- The first QFT was the quantum theory of electricity and magnetism.

Feynman ca. 1960
The Elementary Particles
(that we already know)

27 particle physicists have won Nobel prizes for making the experimental discoveries and theoretical breakthroughs that led to our present understanding.

The Higgs boson?

The present theory describes all known forces and particles, with one very important exception: gravity.
A Sense of Scale

To resolve very small objects, we need to use very high energy. (Heisenberg again)

This is why we have very large accelerators.

High energy collisions also create new particles. (E=mc^2 again)
Quantum Mechanics and Gravity

At very small distances, Einstein’s theory of gravity breaks down.
It also breaks down inside black holes.

We need another scientific revolution to reconcile quantum mechanics and general relativity.

It will radically change our understanding of space and time.

The next breakthroughs must come from experiments.

But theory tells us where and how to look for those breakthroughs.
String Theory

String theory appears to be both a consistent quantum theory of gravity and a unified theory of all particles and forces.

– All the known particles are different vibrations of a single type of string.
– The unique theory of quantum strings needs 10 dimensions.
The Great Questions of Particle Physics

1. Why is gravity so weak?
2. Are there extra space-time dimensions?
3. What is the nature of dark matter?
4. Is nature supersymmetric?
5. What is dark energy?
6. Why is any matter left in the universe?
7. Where does neutrino mass come from?
8. What causes the mysterious Higgs field?
1. Why is gravity so weak?

The gravitational force between two electrons is 42 orders of magnitude weaker than the electrical force between them.

\[10^{42} = \]

\[1,000 \]

All the other forces are about the same size as the electrical force.

We must be missing something.
2. Are there extra space-time dimensions?

Why do physicists think there might be extra dimensions?

– String theory needs them.
– They can be used to disperse the intrinsic strength of gravity, making it seem weak to us.
– They would also solve other mysteries of particle physics.
Extra Dimensions

The extra dimensions are hard to see, for some reason.
They might be compact and small.

1 infinite dimension
+ 1 small dimension

We used to think that the size of the extra dimensions had to be on the natural scale of quantum gravity, the Planck length $\sim 10^{-35}$ m.

But they might be much larger, up to 10^{-18} m, and we would not have observed them with existing experiments.
How might we observe these extra dimensions?

If an extra spatial dimension is compact, coiled up with size R, we would see new massive “Kaluza-Klein” particles

$m = 1/R, 2/R, ...$

We can produce these at colliders if there is enough energy.
Life on a sheet

In another version, the extra dimensions are large, but we are trapped on a 3-dimensional membrane in a higher-dimensional space-time.

Only gravity acts in the extra dimensions, which can be of macroscopic size.
Extra dimensions required a great leap of imagination, as did quantum mechanics and general relativity. It would change our concepts of space and time. They could exist, but do they? If they do, they might well have the mass scale of 1 TeV.
The first particle physics experiment: The Big Bang

10 microseconds
Quarks form protons.

300,000 years
Nuclei capture electrons and form atoms.
The universe becomes transparent.

13,700,000,000 years
Today
Composition of the universe

We are here.

We do not know what makes up 95% of the universe.

- Other elements: 0.03%
- Neutrinos: 0.3%
- Stars: 0.5%
- Free H and He: 4%
- Dark matter: 23%
- Dark energy: 72%
Dark Matter

We see Dark Matter gravitational effects through astronomical techniques.

- Mass warps space, bending the light.

But its properties do not fit any of the standard particles.

Dark Matter is a new form of matter.

The larger, blue objects are images of a distant galaxy. The yellow galaxy cluster in the foreground and its associated dark matter halo act as a gravitational lens.
3. What is the nature of Dark Matter?

To understand dark matter we need to study it in controlled experiments.

We are trying to detect its very weak interactions on earth.

We are also trying to produce it with colliders, and identify its nature.
Catching dark matter particles in the wild

Dark matter particles are hard to see.
- 1 interaction per pound of material per year,
- Nucleus recoils with very small energy,

Very sensitive detectors designed for dark matter are operating at deep underground sites

DMP-Nucleus Scattering
Detector is a germanium crystal at 20 millikelvin, or .02 degrees above absolute zero.
4. Is nature supersymmetric?

“Supersymmetry, if it holds in nature, is part of the quantum structure of space and time.”
“Discovery of supersymmetry would begin a reworking of Einstein’s ideas in the light of quantum mechanics.”
It is a firm prediction of string theory.

Does this elegant theory describe nature?
Only experiment can tell us.

<table>
<thead>
<tr>
<th>particle</th>
<th>superpartner</th>
</tr>
</thead>
<tbody>
<tr>
<td>quark</td>
<td>squark</td>
</tr>
<tr>
<td>gluon</td>
<td>gluino</td>
</tr>
<tr>
<td>photon</td>
<td>photino</td>
</tr>
</tbody>
</table>
The dark matter could be supersymmetric

The lightest supersymmetric particle (LSP) is also an ideal dark matter candidate.

- It is probably stable.
- LSPs produced in the early universe are still bouncing around.
- If LSPs do form the dark matter, then ~100 of them are inside each of us.
Producing and observing supersymmetric particles

If a collider has enough energy to produce supersymmetric particles, we will see them.
5. What is Dark Energy?

Dark energy repels matter and therefore causes the expansion of the universe to accelerate.

The Wilkinson Microwave Anisotropy Probe (WMAP) full-sky map
Quark Asymmetry in the Early Universe

Matter and antimatter were created in equal quantities in the Big Bang. But a small asymmetry in properties led to:

- 10,000,000,001 quarks
- 10,000,000,000 antiquarks

Quarks and antiquarks got together…
Quark Asymmetry in the Early Universe

1 Quark

They have all annihilated away except for the tiny difference.
6. Why is any matter left in the universe?

A small asymmetry in properties between matter and antimatter left us with enough matter to form the present universe.

We know about one such asymmetry in quarks. It does not explain the excess of matter. New quark physics could cause the asymmetry.

Or the answer could come from the exotic world of neutrinos…
Neutrinos are the strangest of the particles we have seen so far.

- They are very, very light.
- Matter is almost transparent to them.

Neutrinos from the Big Bang
10 million inside each of us

Neutrinos from the sun
trillions every second

The sun as seen with neutrinos
Observing the neutrinos all around us

Davis and Koshiba, Nobel laureates 2002

Super-Kamiokande, a neutrino detector
7. Where does neutrino mass come from?

For about 60 years we thought neutrinos were massless, like the photon.

We now know that they have mass.

But how can the mass be so much smaller than every other mass?
How does one weigh a neutrino?
Why is neutrino mass so important?

Neutrinos are strictly massless in the Standard Model. Neutrino mass is the first sign that our existing theory is incomplete.

We believe that the very light neutrinos we see might get their mass from very heavy neutrinos with masses near 10^{15} GeV.

Decays of these heavy neutrinos in the early universe could have led to the small excess of matter that allows us all to be here today.
8. What causes the mysterious Higgs field?

The Higgs field appears to permeate space.

- We know the energy a particle gets from interacting with the Higgs fields as its mass.

The top quark feels the Higgs field most strongly.

Is there a Higgs?
Is there one?
Are there five?!
The Great Questions of Particle Physics

1. Why is gravity so weak?
2. Are there extra space-time dimensions?
3. What is the nature of dark matter?
4. Is nature supersymmetric?
5. What is dark energy?
6. Why is any matter left in the universe?
7. Where does neutrino mass come from?
8. What causes the mysterious Higgs field?
The Answers

We will get answers to most of these questions from experiments that we are building or operating today.
Who will answer these questions?
Although it may take another generation of researchers to figure out Dark Energy.