Outline

* Gaps 1n our knowledge
— Call out the needs along the way

* Gaps 1n our capabilities
e A proposal
— to fill the 2nd gap



Applications on the Horizon

Light sources...FELs, ERLs
— Need > 20 MV/m, CW operation, high Q

High Intensity proton linacs

— Need > 25 MV/m, pulsed, several % duty factor, high
Q to lower dynamic heat load

Linear collider
— Need 35 MV/m, pulsed, 1% duty factor

Common denominator: high gradient, high Q

Muon acceleration
— Need > 15 MV/m, low frequency, Nb-Cu



Gaps in Knowledge

What do we need to get Q >10710?
What 1s the limiting field for Nb? 50?7 40 MV/m?
What 1s the cause of high field Q-slope in Nb?

Why does high-field Q-slope decrease with EP
and baking?

What 1s the cause of general Q-slope in Nb-Cu?

Is there any connection between Nb and Nb-Cu Q-
slope

Are there materials with higher capability than
Nb?



Q: Important Issue for CW and high DF
Eg ERL...

— High Q needed for CW operation at high gradient

— Dynamic heat load dominates
— Eacc =20 MV/m, Q = 1019 => P/L = 40 watt/m

— 5 GeV Linac has 10 kW dynamic heat load at low
temperature

— AC power =7.5 MW....ouch
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T=2K,Q=2.6x10" TESLA Q = 1010

Lower Temperature

T=18K Q=6.3x101
If achieved, higher gradient

T=17K,Q=1.1x101! CW usable

T=1.6K, Q=1.9x10!

One of several needs:
Shield Earth’s magnetic field to 1 mOe

R=1nQ, Q=2x10"
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Figure 2 — Residual resistance as low as 0.5 n€2 1s
actually measured on large area cavities, giving an
intrinsic quality factor Q exceeding 2.10"".
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RF Critical Magnetic Field

Phase transition, flux nucleation requires some time
— (1 ps?) ...Need to measure

2> SoH,;> H_
even H > H_ up to the superheating field.

AtT=0K
— Critical RF field, Hsh, for Nb is about 2400 Oe (240 mT).

For typical v = ¢ cavities this 1s achieved at an
accelerating field of £,.. = 50 MV/m.
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Superheating field

0.89 :
Hy, == H. for k<1,
VECGL
Hy, = 12H. for w=1,
Hy, = 0.75H,. for k= 1.

A, (MHTYy=&THT)



Pulsed measurements of Hsh

Stored Energy

Time

Figure 1: Comparing the behavior of a cavity that quenches with an idealized cavity with no quench. The point

where the two diverge is the H!'.
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Pb on Cu
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Figure 3: Measuring the HE of lead by pulsing a lead coated copper 1.3 GHz cavity.
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Nb-3-Sn - Best Performance CW
Maybe material was not so good
Need better material
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Is there Hope for HTS?
A Comparison of Superconductors @ 1 GHz
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Figure 10: Critical RF fields (Hcef) of sc cavities and Hsh.

Ay {}"jh’i (1) = 5"—'{}"],{;’5.{}"] Need to measure Hc, A and &
|deally measure Hc from
specific heat



Difticulties with this method

Ideally: Measure DC : Hc2 He = op/(dnE)

Determine & from Hc?2 He = GM. = gol(4m)
Determine Hc from specific heat

Get A, ->Hsh A (HG () =dNHAT)

But Saito derives Hc from Hcl via

— DC magnetization...not reliable, flux trapping
empirical relation (between Hcl and Hc)



High Field Q-slope
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Saito again: Hc = 2230 Oe¢ !?

niobium cavities with Hp/Eacc=43.8 Gauss/(MV/m) will

be written as following [27]:
Ry(Eace) = Ryog(Faco) + R,

B J (43.8Facc)”

exp|

=T+C-E'acc- _T+f__'-£acc-

A factor 1/{ 2 front of H¢ in eq. (7) comes from the AC
effective field. A, B and Rres are obtained by the
temperature dependence measurement of Rs at low field.
C - Eacc term in eq.(7) appears by heat stay etffect on the
RF surface due to the poor thermal conductivity in sc

state. In our case these values are A=1.45E-4, B=18.6. =—

Rres =2~10n€2, and C = (3~5)E-3. When fixed A, B and
Rs to the experimental values., eq.(7) includes two free
parameters : C and Hc. Fig.11 shows the fitting results
with a cavity performance by EP or CP. Eq.(7) nicely fits
both results with reasonable Hq value: Hc=2230 Gauss
for EP smooth surface. For the enough electropolished
surface, the resultant Hc is the real thermo-dynamic
critical magnetic field because no field enhancement

) HRe O

- -Saclay cavity: EP120pum + Bake
- ¥ -Saclay cavity: CP130um + Bake

10

20 30 40
Eace [MV/m)

Figure 11: New Q-slope analysis.



Thermometry
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BCP Step =5 um

] i ! .-\."!I.._
00 im B '“1.,.:- ;
gl ‘_,/’\ |, e
& A - ._
j £ 4

gl

Electropolishing
Reduces Grain
Boundary Steps
Reduces Q-slope

EP
Step=1 um |




Coamis

mnis
\"Hints

r

BCP 11T micron

i 2 4 L] A 1 12
Step Haight (micron)

T

Step Haight (micron)

(c)

14



RICH]

. 18%3

B 1891 |

Q. 1Gaae

@, 1637

g8, 16885

4,563

" Field Enhancement at
" Grain Boundary

.

:

:

j

4. 7E-3 4. ¥E-3 2 1E-3 203E-3 0 ZiCn)

\ slope angle

50 um
= step width/2

Magnetic field enhancement ([, )

1.0

3
10 pm = step height

¥
R =1 pum

-4 =2 0 2 4
DCristance from cormer {pm)

Knobloch et al



20—

I | I — 30 | | I I | | | | | | | | I

2.0

Magnetic field enhancement {13, )

Maximum magnetic field enhancement (1, ...

ol Lo v b b by by ] ¥ ey

-+ -2 i 2 - 0 20 4 &l &4
Distance from cormer {um) Slope angle (degrees)
(a) (b)

Figure 11: Magnetic field enhancement due a 100 pm X
10 pm step. (a) Field enhancement along the rf surface
near the corner (slope angle = 20”). (b) Maximum field
enhancement versus slope angle.



Temperature (K)

1.738
BT
# e
Y =
/= .oy
= 07
2 5om
I 5'::}5
E 3,280
2.4983
(a)
[ I

-J}q I I I I I I I I | I I I I | I I
Test C data, Ey. = 30 MV/m

3.0

g.b. Field enhancement = 1.6

2.5

2.0

l'emperature at rf surface (K)

Bath temperature %

0 5 10 15 20

Distance from grain boundary (mim)



Cavity quality (Qh)

Influence of Baking at 150 C
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Similar Results Confirmed by Saclay
But there is something new
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Possible Explanation of Mild Baking Effect:
Independent RF Critical Field Measurements Show That:

2500

N

(=

=

o
I

1500 |-

1000 |

Breakdown Field (Oe)

500

Tom Ha3|/s, Cornel}

cr

I
it

I
= 2400 [1 - (T/IT )%

« BCP Treated Nb
o ny«énriched Nb

0 2 4

6

Temperature (K)

10

Higher Oxygen Content Means Lower RF Critical Field



Need O profile measurements

oxygen-rich

“oxygen-rich

150 C,

48 hours New




Mild Baking Reduces Q-Decline

Epl = 46 MV /im before baking

A—X\ Eacc =23 MV/m
Before Baking

Epk =61 MVim after baking

Eacc =30 MV/m
After Baking



Baking Pushes Transition to
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Need O profile measurements

Safa 100 C, 48 hours

oxygen-rich

“oxygen-rich

150 C,

48 hours New




Anodizing Does Not Help !
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Changing the Growth of Oxide (By Anodizing)
Has Small Eftects
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Nb-Cu

Important issues for
Neutrino Factory...Muon Colliders

General Q-slope Mechanism in Nb Cu films

Cost reduction of 200 MHz cavities



Niobium on Copper Cavities
Fabrication
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Performance of LEP Cavities 350 made

Q [1E9] vs Ea [MV/m]
of accepted NbfCu cavlties
from Industry (vertical test)
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Recircul jtor Linac
2.5-110 GeV

Neutrino Beams
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Test Results CORNELL

Reference cavily: LHC 400MHz Nb-Cu cavily

200MHz cavity vertical test at 4.2K and 3K

(12/11/02-12/12/02)
" ——,—,————————————————— znuquNb-cu
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Compare Best Nb/Cu with Best Bulk Nb
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AFM Results on Surface Structure of Nb/Cu
(INFN

SEM images

Equator

Q-slope in Nb
films 18 related
to grain
structure

iris

Iris




Explore Bias Sputtering Using 500 MHz Cavities

%

i

Argon Ion
bombardment of Nb
film should increase
film smoothness

Use surface tools to examine

i \ And compare films
N

Nb



Bias sputtering
Beijing Results

W

Columnar grains

¥
.
i

Dense film

 Apply a bias voltage to substrate
* Induce substrate ion bombardment .
 Can achieve defect free film ¢

EB, BEEXD



II. Gaps In Capabilities

35 MV/m demonstrated in naked EP cavities - vertical test

And 35 MV/m 1n one fully equipped cavity in horizontal
test

Q values are typically 10710
Need demonstration of cryomodule with 35 MV/m cavities
Need demonstration of CW operation, Q > 1010

Need demonstration of high gradient, high Qext operation
for low beam power applications



Highest Gradient Performance
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More than 35 MV/m in CHECHIA

i.e. high power test and 1/8th of a TTF Linac module
10

AC73 - Vertical and Horizontal Test Results

OCW

L & CW after 20K
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History Lesson -1

Demonstration of capability leads to new
applications,

e.g CESR beam test of 1500 MHz cavity
lead to CEBAF switch from warm to cold

TTF demonstration of 25 MV/m and KEK
demonstration of high power coupler led to

SNS switch to SC technology



History Lesson- 2

* Collaboration important for challenging
demonstrations

e 1995: Fermilab/Cornell/ DESY demonstrate
25 MV/m 1n 1300 MHz cavities

* TTF - large collaboration



Opportunity for a Proposal:
The Fabulous Cryomodule

Must be a collaborative effort

Demonstrate a cryomodule with multiple goals:
ERL light source, proton linac, linear collider
CW operation at E > 20 MV/m
Q=5x10"10atT=1.6 K,CW

Pulsed operation at 35 MV/m, Q = 10”10

Variable iput coupler to demonstrate limits for high Qext
operation for low beam loading

Test with beam
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