Gaseous Hydrogen and Muon Accelerators

Rolland Johnson,
Muons, Inc., Batavia, IL

Muons, Inc. has formed partnerships with IIT, Fermilab, Jefferson Lab, and EM Design, LLC and obtained funding through the DOE SBIR/STTR program to develop techniques for muon beam cooling. Three funded projects are to develop:

1) high-pressure high-gradient RF cavities,
2) cryogenic pulse compressors for high-power cavities, and
3) six-dimensional beam cooling using a helical dipole magnetic channel and continuous gaseous hydrogen absorber.
Muons, Inc. (est. 2002)

• July 2002
 – High-Pressure RF Cavities
 • STTR Ph I grant with IIT-DK ($100k/9mos)
• July 2003
 – High Pressure RF Cavities
 • STTR Ph II grant with IIT-DK ($500k/2yrs)
 – Cryogenic Pulse Compressors
 • Joint Venture with EM Design LLC
 • STTR Ph I grant with Fermilab-DF ($100k/9mos)
 – 6-d Helical Dipole Cooling Channel
 • SBIR Ph I grant with Jlab-YaD ($100k/9mos)
Need for Cooled Muon Beams

- Muon Colliders (Energy Frontier Machine)
 – Not limited by synchrotron radiation like e^+e^-
 – 1/10 energy and footprint of Proton Colliders
- Neutrino Factories (Muon Storage Ring)
 – Exciting New Physics
- Intense Sources of Muons
 – e.g. Muon Spin Resonance
Muon Ionization Cooling

• Muons lose energy by dE/dx in 3 directions
• Longitudinal energy replaced by RF
• Focused by 5 Tesla solenoidal field
 – No Superconducting RF
• Cools to limit of multiple scattering
Hydrogen Gas Virtues/Problems

- Best ionization-cooling material
 - \((X_0 \times \frac{dE}{dx})^2\) is figure of merit
- Good breakdown suppression
- High heat capacity
 - Cools Beryllium RF windows
- Scares people
 - But much like CH₄
Regions of Interest for High Pressure Gaseous Hydrogen Cooling Channels

<table>
<thead>
<tr>
<th></th>
<th>Pressure</th>
<th>Temperature</th>
<th>rho/\rho_{L H} dE/dx</th>
<th>L/200M eV</th>
<th>V s</th>
<th>Rs/Rs_{293}</th>
<th>Rs/Rs_{293} (@ 200MHz)</th>
<th>Rs/Rs_{293} (@ 800MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaseous H\textsubscript{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>atSTP</td>
<td>1</td>
<td>293</td>
<td>0.001</td>
<td>0.64</td>
<td>5304</td>
<td>4</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Feltri [1948]</td>
<td>23</td>
<td>293</td>
<td>0.027</td>
<td>0.67</td>
<td>231</td>
<td>28</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Lab G achieved</td>
<td>12</td>
<td>77</td>
<td>0.054</td>
<td>1.72</td>
<td>116</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab G goal</td>
<td>100</td>
<td>77</td>
<td>0.450</td>
<td>14.35</td>
<td>14</td>
<td>435</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Liquid H\textsubscript{2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Averages Double Flip</td>
<td>1</td>
<td>293</td>
<td>0.125</td>
<td>3.98</td>
<td>50</td>
<td>50</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
HP HV RF Cavities

• Dense GH$_2$ suppresses high-voltage breakdown
 – Small MFP inhibits avalanches (Paschen’s Law)

• Gas acts as an energy absorber
 – Needed for ionization cooling

• Only works for muons
 – No strong interaction scattering like protons
 – More massive than electrons so no showers
2002 STTR Phase I Project

To build an RF test cell for testing breakdown characteristics of gases for ionization cooling. For use in Phase II for the exploration of Paschen’s Law, relating breakdown voltages to gas density, over a range of temperatures, pressures, external magnetic fields, and ionizing particle radiation at Lab G and the Linac Test Area.
Gaseous Hydrogen for Muon Beam Cooling

R. P. Johnson, R. E. Hartline
Muons, Inc., Batavia, IL 60510

C. M. Ankenbrandt, M. Kuchnir, A. Moretti, M. Popovic
Fermi National Accelerator Lab., Batavia, IL 60510

M. Alsharo’a, E. L. Black, D. M. Kaplan,
Illinois Institute of Technology, Chicago, IL 60616

phase I results presented at PAC2003
Paper available at http://members.aol.com/muonsinc
Special Acknowledgements

• John Anderson
• Wes Smart’s Committee, esp. Jim Kilmer and Tom Peterson
• Cary Kendziora, Del Allspach, Jim Tweed, Sauli Sylejmani
• Dave Augustine
805 MHz RF test cell schematic
Paschen Curve for Helium at 77 K

Gradient (MV/m) vs. Pressure (PSIA)

- Blue line: Gradient (MV/m)
- Pink squares: f (MHz)
Gradient vs Pressure for GH2 at 77K

- Gradient (MV/m)
- Pressure (PSIA)

This Experiment vs Felici (1948)
H2 DC Paschen Data existed up to P=25 Atm, V=28 MV/m

Breakdown voltages in hydrogen (Müller, 1966. Reproduced by permission of Springer–Verlag)

Müller (1966)
O Félici and Marchal (1948)
STTR Phase I & II Status

• Measured helium Paschen curve
 – Built RF test Cell
 – Achieved Phase I goal

• Measured hydrogen Paschen curve
 – Satisfied FNAL safety requirements
 – 50 MV/m at 77 K and 12 Atmospheres!

• Phase II Granted 6/23/2003!!!!
 – Study Hydrogen breakdown (B and radiation)
 – Develop cavity designs (800 & 200 MHz)
Hopes for HP GH2 RF

- Higher gradients than with vacuum
- Less dependence on metallic surfaces
 - Dark currents, x-rays diminished
- Easier path to closed-cell design
 - Hydrogen cooling of Be windows
- Use for 6D cooling and acceleration
 - Homogeneous absorber concept
Present Activities for HP RF Phase II project

- Study breakdown with molybdenum and other electrodes
- Redesign Test Cell for Operation in the LBL 5 T solenoid
- Ensure MUCOOL Test Area Beam Line is available in 2005
2003 Muons Inc. Ph I Proposals:

• Transverse Ionization Cooling (w/ FNAL)
 – MANX ion-cooling demonstration (rejected)

• RF power sources (w/ FNAL)
 – Cryogenic pulse compressors (approved)
 – Joint Venture with EM Design LLC
 – MTA facility

• 6D Cooling (w/ TJNAF) (approved)
 – Homogeneous absorber (No wedges)
 – helical dipole channel
MANX MICE Comparison

• Conventional LH2 cooling channel
 – Liquid hydrogen absorbers between RF cavities
 – Placed at low β locations, where solenoidal fields change direction

• Proposed GH2 cooling channel
 – Continuous dense hydrogen absorber fills RF cavities
 – Low β is continuous along channel
Muon Collider And Neutrino Factory Experiment

- MANX follows MICE
- Hi-Pressure GH2
- Continuous Absorber
- Continuous low-β
 - Single-flip Solenoids
- Internal Scifi detectors
 - Minimal scattering
MICE

07/17/03 Accelerator Physics and Technology 28
MANX is GH2 version of MICE
MICE changes into MANX

• Continuous GH2 replaces LH2 flasks
 – High density from P and/or T

• Opposing solenoids
 – Simple picture of “single-flip” lattice
 – Needs blackboard

• Detectors (scifi) in gas
 – No pressure windows to obscure cooling
Cryogenic Pulse Compressors

Figure 1. A comparison of the SLED and Circulator designs.
Magic of Pulse Compression

Figure 2. Input and output voltage of a compressor as a function of time.
6-dimensional cooling

- Essential for Muon Collider, useful for NF
- Still IC, but dE/dx depends on μ Energy
- Ring Cooler studies in fashion
 - Generates dispersion as in a synchrotron
 - Economical: 15 turns means reused RF and absorbers
 - Problems with injection/extraction, absorber heating, RF beam loading
Balbekov Ring Cooler

Figure 1: Layout and parameters of the solenoid based ring cooler.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>36.963 m</td>
</tr>
<tr>
<td>Nominal energy at short SS and bends</td>
<td>250 MeV</td>
</tr>
<tr>
<td>Bending field</td>
<td>1.453 T</td>
</tr>
<tr>
<td>Norm. field gradient</td>
<td>0.5</td>
</tr>
<tr>
<td>Max. solenoid field</td>
<td>5.155 T</td>
</tr>
<tr>
<td>RF frequency</td>
<td>205.69 MHz</td>
</tr>
<tr>
<td>Accelerating gradient</td>
<td>15 MeV/m</td>
</tr>
<tr>
<td>LH$_2$ absorber length</td>
<td>128 cm</td>
</tr>
<tr>
<td>LiH wedge absorber</td>
<td>14 cm</td>
</tr>
<tr>
<td>Grad. of energy loss</td>
<td>0.75 MeV/cm</td>
</tr>
</tbody>
</table>

Legend:
- Bending magnet
- Solenoid coils
- Direction of magnetic field
- Liquid hydrogen absorber
- LiH wedge absorber
- 205 MHz cavity
Emittance Exchange With GH2

Figure 1. Use of a Wedge Absorber for Emittance Exchange

Figure 2. Use of Continuous Gaseous Absorber for Emittance Exchange
Helical Dipole Magnet

Direct Wind Type
6-d Cooling with GH2

• Derbenev channel: Solenoid plus transverse helical dipole fields
• Analytically see equal cooling decrements and 10^6 phase space reduction in ~150 m channel
• Avoids ring problems
 – Injection and Extraction simpler
 – No Multi-pass Beam loading or Absorber heating
 – Can adjust channel parameters as beam cools
Conclusions

• GH2 an enabling technology for μ machines
 – Shorter, less-expensive, more efficient cooling
 – Less expensive acceleration for Neutrino Factory
 – 6-d Cooling makes Muon Collider possible

• SBIR/STTR funding new for basic research
 – Explicit in last solicitation
 – Muons, Inc. and IIT need physicist(s) and engineers(s).
 – CVs to kaplan@fnal.gov and roljohn@aol.com