MuCool and Neutrino Factory R&D

Fermilab Accelerator LRP Open Session
A. Bross
November 18, 2003
Introduction

• Neutrino Oscillation Physics has created a revolution in HEP in recent years
• Quite possibly the ultimate tool for studying neutrino oscillations (and neutrino interactions in general) is the so-called Neutrino Factory (see S.Geer's talk)
• The Fermilab community is actively involved in the international Neutrino Factory R&D effort
 ◆ Physics studies
 ◆ Accelerator design and simulation
 ◆ Accelerator component design, construction, and test
• The MuCool Collaboration is focusing on R&D on components for a particular implementation of a Neutrino Factory
 ◆ Muon Ionization Cooling
Muon Ionization Cooling

- Although the concept of muon ionization cooling is relatively straightforward (transverse, at least)
 - Muons pass through material losing energy
 - They are then accelerated regaining only longitudinal momentum

- However, theory is sometimes much simpler than reality
Muon Ionization Cooling

- There are both linear and ring implementations proposed for muon ionization cooling ...

Note: Rings provide 6D cooling and therefore present some differences in implementation.
Muon Ionization Cooling

• ... They all require high-gradient Normal-Conducting RF, some sort of absorber, and high field magnets

• The theory, and now detailed and quite extensive simulations show that ionization cooling can work
 ◆ Still some problems to be solved with 6D cooling
 ▲ Injection and extraction

• However, engineering a real system is a daunting task
 ◆ Performance criteria in design/simulation – quite aggressive
 ◆ Many of the specifications push state-of-the-art
 ◆ System integration problems are formidable
 ◆ Operational safety concerns are an issue

• Before building a complete cooling channel an extensive R&D program is required in order to
 ◆ Demonstrate there are no unforeseen problems
 ◆ Verify performance criteria are met
 ▲ With high-intensity beam in many cases
 ◆ Demonstrate cooling in a test channel

• Note
 ◆ For Neutrino Factories and Muon Colliders these same statements can be made regarding: Proton Driver, Targetry, Acceleration
 ▲ No off-the-self items!
The MuCool Collaboration

- **MuCool Mission**
 - Design, prototype and test all components of a muon ionization cooling channel
 - Perform high beam-power engineering test of cooling section
 - Support MICE (cooling demonstration experiment)
 - Successful MuCool + MICE programs will provide key technical input to decision on Neutrino Factory

- Consists of 70 scientists from 18 institutions from the US, Europe, and Japan
- Primary Support for MuCool comes from non-base program funds
 - Accelerator R&D through broader Muon Collaboration
- Fermilab staff are involved in essentially all aspects of the R&D program
- Fermilab staff key members of the Neutrino Factory Design Effort (Muon Collaboration)
The Details - SFOFO Cooling Lattice

Basic Components
- Absorbers – Most likely LH$_2$
- 201 MHz RF
- Superconducting Solenoids (On-axis fields up to $\approx 3-4T$)

This shows lattice to be tested in MICE
Research and Development Challenges

- Can NCRF cavities be built that provide the required accelerating gradients?
 - AND operate in multi-tesla fields!
- Can the heat from dE/dx losses be adequately removed from the absorbers?
 - On the order of 100's W for a neutrino factory
 - kW for ring cooler designs
- Can the channel be engineered with an acceptably low thickness of non-absorber material in the aperture?
 - Absorber, RF, & safety windows
- Can the channel be designed & engineered to be cost effective?
RF Cavity R and D

ANL/FNAL/IIT/LBNL/UMiss
RF Cavity R&D - Prototype Tests

- Work to date has focused on using 805 MHz cavities for test
 - Allows for smaller less expensive testing than at 201 MHz
 - Lab G work at Fermilab
 - Phase I
 - Open Cell cavity reached 54 MV/m surface field (25 MV/m on axis)
 - Large dark currents increased with B field - tested to 2.5T

Lab G RF Cave showing 5T SC Magnet
44 cm bore
Lab G Tests Phase II
- Closed Cell (pillbox) - $E_{acc}/E_{surf} = 0.99$
- Reached 34MV/m with little sparking and low background
 - Thick Cu windows
 - B=0
RF Cavity Prototype Tests
805 MHz Pillbox

- With Solenoidal field
 - Thin (0.015”) Cu windows
 - Dark currents much larger, damage seen
 - Pitting
 - Dark currents reduced via conditioning
 - Conditioned to 20 MV/m
 - Be windows (0.010”)
 - TiN coated
 - Conditioned to 16MV/m
 - Dark currents then rose
 - However, no damage in evidence to Be
 - Copper contamination
 - From iris/flange surface
 - At 8MV/m dark currents very low
 - Acceptable for MICE
RF R&D - 201 MHz Cavity Design

- Design Complete
 - Electrical, Mechanical, and thermal analyses have been done
 - $E_{pk, \text{surf}} = 26.5$ MV/m
 - Fabrication has started
 - Goal is to have a 201 MHz cavity under test at Fermilab 04

201.25 MHz cavity conceptual design

Exploded views showing foil and grid mounting hardware
Absorber R and D

FNAL/IIT/KEK/NIU/Osaka/Oxford/UIUC/UMiss
Absorber Design Issues

- **2D Transverse Cooling**

\[\frac{d\epsilon_N}{ds} = -\frac{1}{\beta^2} \frac{dE_\mu}{ds} \frac{\epsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \text{ GeV})^2}{2 \beta^3 E_\mu m_\mu L_R} \]

and

\[\epsilon_{N,\text{min}} = \frac{\beta_\perp (14 \text{ MeV})^2}{2 \beta m_\mu \frac{dE_\mu}{ds} L_R} \]

- **Figure of merit:** \(M = L_R \frac{dE_\mu}{ds} \)

\(M^2 \) (4D cooling) for different absorbers

<table>
<thead>
<tr>
<th>Material</th>
<th>(\langle dE/ds \rangle_{\text{min}}) (MeV g(^{-1}) cm(^2))</th>
<th>(L_R) (g cm(^{-2}))</th>
<th>Merit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH(_2)</td>
<td>4.103</td>
<td>61.28</td>
<td>1.03</td>
</tr>
<tr>
<td>LH(_2)</td>
<td>4.034</td>
<td>61.28</td>
<td>1</td>
</tr>
<tr>
<td>He</td>
<td>1.937</td>
<td>94.32</td>
<td>0.55</td>
</tr>
<tr>
<td>LiH</td>
<td>1.943</td>
<td>86.93</td>
<td>0.47</td>
</tr>
<tr>
<td>Li</td>
<td>1.639</td>
<td>82.76</td>
<td>0.30</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>2.417</td>
<td>46.22</td>
<td>0.20</td>
</tr>
<tr>
<td>Be</td>
<td>1.594</td>
<td>65.19</td>
<td>0.18</td>
</tr>
</tbody>
</table>

H\(_2\) is clearly Best -
Neglecting Engineering Issues
Windows, Safety
Absorber Design Issues

- **Design Criteria**
 - **High Power Handling**
 - Study II - few 100 W to 1 KW with “upgraded” (4MW) proton driver
 - 10 KW in ring cooler
 - Must remove heat
 - **Safety issues regarding use of LH$_2$ (or gaseous H$_2$)**
 - Window design paramount
 - H$_2$ containment
 - Proximity to RF adds constraints (ignition source)
 - **Window material must be low Z and relatively thin in order to maintain cooling performance**

H_2 implies engineering complexity
Absorber R&D

- Two LH$_2$ absorber designs are being studied
 - Handle the power load differently

Forced-Convection-cooled. Has internal heat exchanger (LHe) and heater

Forced-Flow with external cooling loop
• Thin windows are required in all absorber designs
 ◆ Critical design issue
 ▲ Performance
 ▲ Safety
 ◆ First examples made with AL T6061
 ◆ Maybe even thinner with
 ▲ Al-Li alloy - 2195
Gaseous Absorber – Muon’s Inc

- Work on Phase I STTR
 - 805 MHz test cell
 ▲ Tested at Lab G
 - Cell conditioned at 450 psig @ 80K
 - Max stable gradient
 ▲ 47 MV/m
 - Data agree well with Pashen Law up to ≈ 170 psig
 - From 170-500 psig no increase in max gradient
 ▲ Surface breakdown
 - Improve electrode surface qualities
 - Data extrapolate to almost 240 MV/m at 80K & 100 atm
MuCool Test Area
MuCool Test Area (MTA)

- Facility to test all components of cooling channel (not a test of ionization cooling)
 - RF power from Linac (201 and 805 MHz test stands)
 - Waveguides pipe power to MTA
 - LHe refrigeration plant for tests of LH$_2$ absorbers and for superconducting magnets
 - Hydrogen gas facility
MuCool Test Area (MTA)

- First Experiment in MTA is now setting up
 ▲ LH$_2$ Convectiv-flow absorber (KEK)
- We eventually wish to bring Linac Beam out the area
 ▲ Designed to accommodate full Linac Beam
 ▲ 1.6 X 1013 p/pulse @15 Hz
 - 2.4 X 1014 p/s
 - ≈ 600 W into 35 cm LH$_2$ absorber @ 400 MeV
- This will allow us to test cooling components at high beam current
Simulation Work

- **Cooling Components as mentioned**
 - Absorbers – 2D and 3D Finite Element Analysis (FEA)
 - 2D Computational Fluid Dynamics (CFD)
 - RF – Electromagnetic modeling of Be windows and grids
 - FEA modeling of window deflection/stress
- **Quad-focused cooling channel**
- **Study II cooling channel**
 - GEANT4 simulation including latest window design
- **MICE**
 - GEANT4 framework developed
MuCool and MICE

- Muon Ionization Cooling Experiment (MICE)
 - Demonstration of “Study II” cooling channel concept
 - Has Now Received Scientific Approval from the UK!
- MuCool Collaboration interface to MICE
 - Design Optimization/develop of Study II cooling channel
 - Simulations
 - Detailed engineering
 - Full component design
 - Systems integration
 - Safety
 - RF, Absorber - development, fabrication, and test
 - Development of beam line instrumentation
 - MuCool will prototype and test cooling hardware including MICE pieces which the collaboration is responsible
- High-intensity Beam Tests are ultimately the responsibility of MuCool and are, of course, fully complementary to MICE
MuCool Plans

- **Continue 805 MHz RF studies in Lab G**
 - Window and grid tests
 - Surface treatment/materials tests
 ▲ Effect on dark current and breakdown
- **Continue development of thin windows for absorbers**
 - Already within the material budget of Study II even with the extra windows
- **MuCool Test Area (MTA)**
 - First work in MTA has started - fill of LH₂ absorber (convective)
- **In FY04**
 - Provide 201 & 805 MHz capability for MTA
 - Provide as much of the cryo infrastructure as funding allows
 - Fabricate first 201 MHz cavity and bring to MTA for test
 - Possibly move Lab G magnet to MTA for test with cavity
 - Initiate Full beam-line design and complete shielding assessment
 ▲ Dependent on availability of Laboratory resources
- **In FY05**
 - Complete MTA cryo (if needed)
 - Fabricate coupling-coil prototype (funding driven - Lab help)
 - Begin installation of 400 MeV beam line from Linac
 ▲ Dependent on availability of Laboratory resources
- **In FY06**
 - Bring high intensity beam to MTA (again dependent on Lab resources)
 ▲ Test complete set of cooling components in high intensity beam
Conclusions

- Excellent progress has been made on the design and engineering of ionization cooling components
 - On-going NCRF R&D has demonstrated High Gradient low dark current operation
 ▲ R&D continues in order to continue to push HG Low DC operation in B field
 - This work is of general interest to HEP Accelerator R&D
 - Design of LH₂ absorbers and windows has matured
 ▲ "Thin" window required spec appears to have been met
 - Detailed engineering of components has matured
 - MuCool Test Area is complete and first experiment is being setup
- Speed of progress in FY04+ will depend on funding
 - Beam to the MTA will have to be addressed by the laboratory
- MuCool is a thriving International Collaboration
 - Absorbers - Japan
 - Absorber/Window design - UK
 - Closely coupled to and working with the MICE collaboration