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TTF/FLASH layout 9mA Experiment 
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FLASH 9mA Experiment achievements: pre-2012 

High beam power and long bunch-trains (Sept 2009) 

Metric ILC Goal Achieved 

• Macro-pulse current 9mA 9mA 

• Bunches per pulse 2400 x 3nC (3MHz) 1800 x 3nC 

2400 x 2nC 

• Cavities operating at high 

gradients, close to quench 

31.5MV/m +/-20% 4 cavities > 30MV/m 

Gradient operating margins (Feb 2011) 

Metric ILC Goal Achieved 

• Cavity gradient flatness  

(all cavities in vector sum) 

2% DV/V (800ms, 9mA) 2.5% DV/V (400ms, 4.5mA) 

“Methodology established” 

• Gradient operating margin All cavities operating 

within 3% of quench limits 
(Focus of early 2012 run) 

• Energy Stability 0.1% rms at 250GeV <0.15% p-p (0.4ms) 

<0.02% rms (5Hz) 
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9mA studies (Feb 2012) 

• Study topics 

– How well can we flatten the individual cavity gradients 

– How close to quench can we run the cavities with beam 

– How close to saturation can we run the klystron 

– How to ramp up to the maximum current, pulse length, and 

gradient without quenching 

 

• Machine conditions used 

– 800us bunch-trains (2400 bunches) 

– Average current over 800us: ~4.5mA (1.5nC/3MHz)  

– Beam energy: 1GeV 

– Energy gain on ACC67: 380MeV with 13 cavities 

– Operating gradients on ACC67: 29MV/m average, four cavities 

running above 31MV/m 
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Key Results 

• Beam operation with 800us/4.5mA bunch trains, and… 

– Gradients of all cavities in vector sum flat within +/-0.3%, 

– All cavities in vector sum operating within 5-10% of quench 

 

• First experience of ‘high gradient operations management’ 

– Quench detection / exception handling 

– Gradient ‘soft limiter’ to dynamically prevent quenching 

– Data-point of running machine into quench with 800us/4.5mA 

 

• Beam operation with 800us/4.5mA bunch trains, and.. 

– RF forward power within ~7% of klystron saturation 

 

• Ramp-up from ~zero to 800us/4.5mA pulses without quenching 

• Rapid recovery (‘crash test’): 800us/4.5mA -> trip -> 800us/4.5mA 
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XFEL
X-Ray Free-Elect ron Laser

Cavity gradient tilts from beam loading 
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A ‘feature’of running cavities with 

a spread of gradients when the 

are all fed from same RF source 

Solution: adjust individual Pks and 

Qls so each cavity is ‘matched’ for 

the same beam current 

Steady-state cavity voltage 
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Ratios of power required by each cavity are different 

between beam off and beam on 

 

Klystron power increases linearly with beam current 

• Higher gradient cavities get too much extra power 

• Lower gradient cavities get not enough extra power Must be solved uniquely for a given 

beam current and set of gradients 
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XFEL
X-Ray Free-Elect ron Laser

Bounding sources of errors from beam current scans 

(Example of match at 3mA) 
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As the beam current is scanned, the 

tilt changes from negative to positive. 

At some current, the cavity tilt is zero 

During Feb 2011 studies, cavity Loaded-Qs were adjusted manually 

(Quality of the results were a function of the patience of the studiers) 

Feb 2011 
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Operation close to the limits: 

Iterative QL optimization for flattest gradients 

• Set up Qls using analytically determined values 

• Then use iterative algorithm to fine-tune to find optimum 

• Gradient flatness far better than needed tolerances of ~few % 

Gradient flat-tops over 800us pulse 

Before correction After correction 

15% p-p <0.6% p-p 

Time (us) Time (us) 

Gradient flat-tops over 800us pulse 

After correction Before correction 

Gradient tilts by cavity (%) Gradient tilts by cavity (%) 
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Operation close to the limits: ramping up to full 

beam power at maximum gradients 

The optimal QL settings to achieve flat gradients are different for each 

beam current and gradient vector sum 

– Changing current without re-optimizing causes gradient tilts 

– If gradients are already close to the limits  QUENCH 

How to ramp up to full current/pulse length without quenching..? 

 

Proposal #1: start with maximum current but short bunch train 

• Correct QLs to achieve flat gradients with short bunch train 

• Progressively increase length of bunch train 

• Ideally, there would be no corrections to QLs needed 

 

Proposal #2: start with full bunch train, but low charge 

• Correct QLs to achieve flat gradients with the lower charge 

• Progressively increase charge 

• Continue to adjust QLs to maintain flat gradients as charge is increased 
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Outline 

• Brief recap of achievements to date 

• Results from beam studies in Feb 2012 

– Gradient flattening studies (‘Pk/Ql control’) 

– Gradient limit studies 

– Klystron saturation studies 

• Tests at FNAL and KEK 

• Assessment of results / extrapolation to ILC parameters 

• System test program, post TDR 
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Operation close to the limits: gradient limit studies 

Planned studies 

• Measure in-situ gradient limits 

with and without beam, compare 

with test stand data 

• Determine the maximum usable 

vector sum for 16 cavities with 

beam loading 

• Evaluate quench detection / 

protection tools 

• Ramp from zero to full current 

and full gradient (see earlier) 

Julien Branlard 

Typical quench signature: 

a sudden drop in Ql : DQl 5e5 
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Quench limit study: 

In-situ measured quench limits (no beam) 

ACC6 C1 C2 C3 C4 C5 C6 C7 C8 

Measured 36.2 32.3 
Skipped 

(>30MV/m) 

Skipped 

(>30MV/m) 
> 17 18.6 29.1 25.1 

Reported 

(Katalev) 
34 32 34 32 21 21 29 26 

ACC7 C1 C2 C3 C4 C5 C6 C7 C8 

Measured 28.5 
Skipped 

(>30MV/m) 

Skipped 

(>30MV/m) 

Skipped 

(>30MV/m) 

Skipped 

(>30MV/m) 

Skipped 

(>30MV/m) 
27.35 26.7 

Reported 

(Katalev) 
29 31 34 30 35 39 27 26 

• The cavities which were skipped perform better than 30 MV/m 

• Some cavities performed slightly better than expected  

• High performing cavities were skipped for reasons explained later  

• Globally, good agreement with previously reported limits and recently measured ones 

Julien Branlard 

John Carwardine GDE PAC: May 2012 21 



Operating close to the limits: quench protection 

Goal is to operate close to gradient limits, so we must protect against 

quenching but without causing frequent pulse terminations 

 

Three levels of detection/prevention of quenches 
 

1. Quench detection (Quench Server) 

• Look for sudden drop in Loaded-Q at end of rf pulse 

• Inhibit subsequent pulses 

 

2. Over-voltage protection during rf pulse (‘hard limiter) 

• Gradient Limit alarm threshold for each cavity 

• Terminate rf pulse as soon any cavity exceeds its threshold 

 

3. Over-voltage soft-limiter during rf pulse (‘soft limiter’) 

• Gradient Pre-limit threshold for each cavity 

• Dynamically ramp down the klystron drive setpoint if any cavity 

reaches a predefined limiter threshold threshold 

Interlock 

Interlock 

Gradient 

management 
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If any cavity gradient reaches a defined threshold, the 

Klystron is automatically ramped down within the rf 

pulse. Prevents quench without initiating an rf trip 

Gradient operations management: 

‘Soft-limiter’ dynamically prevents quenches 
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‘Mombo’ quench event: 25 Feb 05:05:21  

What happens if quenches are not detected & acted upon…? 

 

• Quench detection was temporarily disabled 

• Beam was enabled - 700us bunch trains 

• Ramped up Vector Sum on one module (ACC7) small steps 

 

• ACC7 Cavity 1 was the first to quench 

– Initially, the LLRF controller was able to maintain the Vector 

Sum by increasing the klystron power 

– (There was even a full-energy beam pulse) 

– Then, a cascade of quenches followed as the klystron 

was driven progressively harder… 
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Event #14427309: ACC7 cavity gradients before first quench 

Red: this event,  Blue: previous event, Green: nominal 
26 



QL drop 

Event #14427310: Raised gradient setpoint by ~2% 

Red: this event,  Blue: previous event 
27 



Event #14427311: C1 quenched, QL drop on C2 and C4 

QL drop QL drop Quench 

Vector Sum is maintained by driving the other cavities harder Red: this event,  Blue: previous event, Green: nominal 
28 



Event #14427312: C2 & C4 quenched, QL drop on C7 & C8 

QL drop 

Quench 

QL drop 

Quench 

Red: this event,  Blue: previous event, Green: nominal 
29 



Event #14427313: quenches on C7, C8, C5, C3 

Quench Quench Quench 

Quench 

Red: this event,  Blue: previous event, Green: nominal 
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Event #14427314: all cavities quenched, except C6 

Red: this event,  Blue: previous event, Green: nominal 
31 



Event #14427315 

Red: this event,  Blue: previous event, Green: nominal 
32 



Event #14427316 

Red: this event,  Blue: previous event, Green: nominal 
33 



Event #14427317 

Red: this event,  Blue: previous event, Green: nominal 
34 



Event #14427318: C6 finally quenches 

Quench 

Red: this event,  Blue: previous event, Green: nominal 
35 



Event #14427319: all cavities quenched 

Red: this event,  Blue: previous event, Green: nominal 
36 



Event #14427320: all cavities quenched 

Red: this event,  Blue: previous event, Green: nominal 
37 



Event #14427321: all cavities quenched 

Red: this event,  Blue: previous event, Green: nominal 
38 



Event #14427322: all cavities quenched 

RF is turned off by a cryo alarm at ~5:06:20 Red: this event,  Blue: previous event, Green: nominal 
39 



Maximum instantaneous gradients 

during Mombo quench event 

1st 
2nd 

7th 

3rd 

6th 

8th 

4th 5th 

Quench sequence Blue: Limits from Katalev 

spreadsheet 

 

Red: maximum gradient 

during quench event 
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Outline 

• Brief recap of achievements to date 

• Results from beam studies in Feb 2012 

– Gradient flattening studies (‘Pk/Ql control’) 

– Gradient limit studies 

– Klystron saturation studies 

• Tests at FNAL and KEK 

• Assessment of results / extrapolation to ILC parameters 

• System test program, post TDR 
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XFEL
X-Ray Free-Elect ron Laser

• As in RDR, llrf tuning overhead is 16% in power. 

• Further suppression of rf overhead is requested. 

• LLRF overhead covers such as 
      (dynamic) microphonics, fluctuation of HV (klystron), beam current, … 

      (static) Pk and Ql tolerance, HV ripple, … 

LLRF tuning overhead 

operation  

(~8.4 MW @33 MV/m) 

Llrf overhead 

Note: 10;1 change 

in the klystron 

gain slope! 

GDE PAC: May 2012 
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XFEL
X-Ray Free-Elect ron Laser

• Under normal 9mA studies conditions, the klystron forward power is not 

sufficient to put the klystron into saturation 

• Saturation point of the klystron was artificially reduced by lowering the HV 

• Beam pulse: 4.5 mA / 800us 

• Filling time was adjusted to have ~rectangular output.(500us ->660us) 

• Operation point during beam-on was about 7% (in power) from saturation.   

Filling                      Flat-top 

Saturation (1.58MW) 

RF output with “bump” set-table 

Operation(1.48MW) 

RF operation condition for klystron 

saturation studies 

Klystron saturation 

power vs anode voltage 

GDE PAC: May 2012 
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9mA Studies: evaluating rf power overhead requirements 
(4.5mA/800us bunch trains) 
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• Klystron high voltage was reduced 
from 108KV to 86.5KV so that the rf 
output just saturated during the fill 

• The required beam-on power ended 
up being ~7% below saturation 

Response to step up is slower because the 
klystron cannot deliver the power demanded 
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Outline 

• Brief recap of achievements to date 

• Results from beam studies in Feb 2012 

• Quantum Beam at KEK 

• Assessment of results / extrapolation to ILC parameters 

• System test program, post TDR 
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KEK-STF 

Quantum-Beam Accelerator 

STF Quantum-Beam experiment 

2012. Feb : cool-down started, 

     April : beam acceleration 

High-flux X-ray by Inverse-Comton scattering 

10mA electron beam （40MeV, １ｍｓ, ５Ｈｚ） 

4-mirror laser resonator cavity 

head-on collision with beam 

Target: 1.3 x 1010 photons/sec 1%bandwidth 

Capture cryomodule ( 2 SC cavities ) 

collision point 

(Laser, electron beam) 

photocathode RFgun 

PAC, Fermilab, 15 May 2012 Jim Kerby - Fermilab 



Outline 

• Brief recap of achievements to date 

• Results from beam studies in Feb 2012 

• Lorentz-force detuning compensation at NML 

• Assessment of results / extrapolation to ILC parameters 

• System test program, post TDR 
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Lorentz-force detuning compensation 

Standard compensation method 

• Half-sine impulse applied to piezo 

tuner prior to the RF pulse 

• Optimize pulse parameters 

(amplitude, delay, frequency, etc) 

• Can give excellent results for short 

pulses. The method used at FLASH 

W. Schappert 

Uncompensated Lorentz-force 

detuning during rf pulse 

Time (us) 
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Fermilab/NML: adaptive learning feed-forward 

• Use measured transfer function from piezo to LFF 

• Accurate measurements of the detuning due to Lorentz force 

• Accurate characterization of the detuning response to piezo 

impulses at various delays 

• Use least-squares to determine the combination of piezo impulses 

required to cancel out the Lorentz force detuning  

• Linear problem: Invert Response Matrix using standard matrix algebra 

 

 

 



Adaptive LFF compensation at S1-Global 

• Single cavity system deployed to 

KEK during LFD studies of S1-G 

cryomodule 

• Successfully reduced LFD to less 

than 16 Hz in cavities with 

– KEK Slide Jack Tuners 

– DESY/Saclay Tuners 

– INFN/FNAL Tuners 

Aim to test this method at FLASH 

during the next 9mA studies 



Outline 

• Brief recap of achievements to date 

• Results from beam studies in Feb 2012 

• Tests at FNAL and KEK 

• Assessment of results / extrapolation to ILC parameters 

• System test program, post TDR 
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TD Phase R&D results (updated mid 2012): 

System Tests with Beam at FLASH 

High beam power and long bunch-trains (Sept 2009) 

Metric ILC Goal Achieved 

Macro-pulse current 9mA (5.8mA) 9mA 

Bunches per pulse 2400 x 3nC (3MHz) 1800 x 3nC 

2400 x 2nC 

Cavities operating at high 

gradients, close to quench 

31.5MV/m +/-20% 4 cavities > 30MV/m 

Gradient operating margins (updated following Feb 2012 studies) 

Metric ILC Goal Achieved 

Cavity gradient flatness  (all 

cavities in vector sum) 

2% DV/V (800ms, 5.8mA) 

(800ms, 9mA) 
<0.3% DV/V (800ms, 4.5mA) 

First tests of automation for Pk/Ql control  

Gradient operating margin All cavities operating 

within 3% of quench limits 
Some cavities within ~5% of quench 

(800us, 4.5mA) 

First tests of operations strategies for 

gradients close to quench 

Energy Stability 0.1% rms at 250GeV <0.15% p-p (0.4ms) 

<0.02% rms (5Hz) 
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Check-list of TD Phase accomplishments 

• Long bunch trains, heavy beam loading demonstration 

– 6mA / 800us demonstrated ( TDR Baseline) 

– 9mA / 800us marginally achieved (luminosity upgrade) 

 

• Vector Sum control of RF unit 

– Operation of RF units comprising 16 and 24 cavities 

– Intra- and inter-pulse stability better than 0.02% 

 

• Operating gradients 

– Operation up to average of 29MV/m (24MV/m to 33MV/m) 

– Lorentz-force detuning compensation on all cavities 

simultaneously 
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Check-list of TD Phase accomplishments 

• Pk/Ql control for optimizing gradient profiles 

– Demonstrated flat gradient solutions to +/-0.3% 

– ILC baseline has more knobs (power ratios), so easier 

 

• Operation close to quench 

– Several cavities within 5-10% of quench at 4.5mA, 800us 

 

• Klystron overhead 

– First results: beam operation within 7% of saturation 

– (Need to evaluate effect on energy stability) 

 

• HOM coupler 

– Beam tests during high power 9mA/800us tests in 2009 

– Excellent agreement between model and measured data 
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Check-list of TD Phase accomplishments 

• Operation close to quench (operability) 

– Ramp-up to 4.5mA, 800us within 10% of quench 

demonstrated without quenching 

– Rapid recovery after quench 

– Quench detection / prevention with beam loading 

 

• FLASH FEL operations… 

– Many 1000’s hours of routine operation for FEL users 

under a wide range of operating conditions 
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Outline 

• Brief recap of achievements to date 

• Results from beam studies in Feb 2012 

• Tests at FNAL and KEK 

• Assessment of results / extrapolation to ILC parameters 

• System test program, post TDR 
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System Tests, post 2012 

• During the TD Phase, we have verified the key fundamental 

technology issues of operating an SC linac at ILC-like 

parameters 

– Long pulse high power beam operation 

– High average gradient, gradient spread 

– Operation close to limits of gradient and rf power 

 

• Post-2012, we move from technology issues to engineering and 

system integration 

– Establish a base of experience for building and operating a 

large-scale high power linear collider, eg 

• Machine protection, exception handling 

• ‘Gradient management’ 

• Startup & machine tuning, achieving stable operation 

• Automation 

• … etc 
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Scalability of machine operations 

• The number of knobs scales ~linearly with the scale of the machine 

• Complexity of operation increases exponentially (system interactions) 

• Operation becomes unmanageable beyond some level of complexity 

• Use automation to contain the level of complexity in the control room 

– Learn how to do this incrementally 
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Number of systems 

Number of control knobs

Complexity of operation

FLASH 

(10% of XFEL) 

EU-XFEL 

(10% of ILC) 

ILC 

Operate FLASH 

as if it were XFEL 

Operate EU-XFEL 

as if it were ILC 



Summary 

• New study results from FLASH in Feb 2012 

– Encouraging results from first beam tests with klystron 

operating close to saturation 

– Significant improvements over the Feb 2011 results for cavity 

gradient flatness (now < 0.6% p-p) 

– Demonstrated ramp-up procedures 

– Successfully automated some key tasks (just starting) 

 

• We should be ready to declare success on the TD Phase R&D 

goals for System Tests with Beam 

 

• Program post 2012: engineering and system integration issues 

for operating large-scale high-power linear accelerator facilities 
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