New Materials and Electromagnetics in Superconducting Accelerator Technology: Five examples of its impact

• Optimized IR for LHC Luminosity
• Triple the energy of LHC
• Super-SPS for ultimate-luminosity LHC
• Electron Cloud Killer for LHC and ILC
• Polyhedral cavity structure for linear colliders

Al McInturff, Peter McIntyre, Akhdiyor Sattarov
Joong Byeon, Patrick Noyes, Nate Pogue
Ray Blackburn, Nick Diazcenko, Tim Elliott, Bill Henchel, Drew Jaisle

Accelerator Research Lab
Texas A&M University
What we are funded to do: new technology for high-field dipoles

- Nb$_3$Sn: 14 Tesla dipole

- Bore field: 14.1 T
- Current: 12.6 kA
- Maximum Coil Stress: 120 MPa
- Superconductor cross section: 29 cm2
New tricks make Nb$_3$Sn feasible

Stress Management

Flux plate suppression of multipoles

Stress in Pa for TAMU2
New Nb$_3$Sn dipole technology:
stress management, flux plate, bladder preload
Recent Results: Testing of TAMU2

- Single-pancake model to evaluate stress management structure: 7 T, 7 kA

\[I_q (A) \]

\[\text{quench number} \]

\[\text{current data lost in DAQ} \]

\[\text{bolt arc on current bus} \]

\[85\% \text{ SS @ .75 T/s} \]

\[\text{~93\% short sample first and every quench – no training} \]

Surprise - low AC losses in coil up to ~2 T/s

- suggests a better technology for rapid-cycling accelerators
1) Optimizing IR for LHC Luminosity

- The intersection region of a collider is like the *objective of a microscope*.
- It brings the beams into collision and focuses them to minimum spot size \(\rightarrow \) maximum luminosity.
- Maximize luminosity \(\Rightarrow \) minimum focal length \(f \sim \beta^2 \Rightarrow \) maximum gradient.
- Minimize chromatic aberrations \(\partial f / \partial E \), harmonic distortion. \(\partial f / \partial x \)
- \(\Rightarrow \) Bring the objective as close to the object (IP) as possible!
- Develop designs for quadrupole \(Q_1 \), dipole \(D_1 \) that can tolerate high radiation, high heat load!
Q₁, D₁ are in harm’s way

Multiplicity \sim f(\eta) \, e^{-bt} \\
E_{\text{particle}} \sim p_t / \theta

So energy flow concentrates strongly down the beam direction.
Design Q_1 using structured cable

Developed at Texas A&M for a different purpose:

Bi-2212 windings for NMR solenoids

6-on-1 cabling of Nb_3Sn strand around thin-wall Inconel X750 spring tube

Draw within Inconel 718 sheath → *stress management* within coil

Interior is not impregnated – only region between cables in winding

Volumetric cooling with supercritical He removes volumetric heating from losses
Ironless Quadrupole for Q_1

350 T/m

4-6 K supercritical cooling

Inconel sheath provides turn/turn insulation

⇒ no insulation to degrade under radiation damage
D₁: Levitated-Pole Dipole

- 8.7 T
- 4.5 K
- 56 mm aperture

Cancel Lorentz forces on coils, pole steel.

Heat, radiation taken on room-temp steel!
This approach to IR elements opens new opportunities to optimize IR optics

Comparison to baseline IR:

- Reduces β^*
- Reduces # of subsidiary bunch crossings
- Reduces sensitivity to error fields and placements
- Opens space for another doublet to fully separate corrections in x, y.
2) Hybrid Dipoles can triple LHC

25 T ⇒ $\sqrt{s} = 40 \text{ TeV}$

$\mathcal{L} \sim 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
Higher field requires new superconductor, handling immense stress loads

Cost today:
- NbTi: $100/kg
- Nb₃Sn: $1,000/kg
- Bi-2212: $2,000/kg
Extend to 24 Tesla:

Bi-2212 in inner (high field) windings,
Nb$_3$Sn in outer (low field) windings

Dual dipole (ala LHC)

Bore field 24 Tesla

Max stress in superconductor 130 MPa

Superconductor x-section:

- **Nb$_3$Sn** 26 cm2
- **Bi-2212** 47 cm2

Cable current 25 kA

Beam tube dia. 50 mm

Beam separation 194 mm
Magnet issues

- Nb_3Sn windings must be reacted at 650°C in argon for a week to form the superconducting phase.
- Bi-2212 windings must be reacted at 850°C in oxygen, ~10 minute excursion to partial melt, $\Delta T \sim 2$°C
- How to do both on one coil???
 - Wind Bi-2212 inner windings, do heat treat.
 - Control fast excursion to partial melt using ohmic heating in coil itself and/or modulation of pp O$_2$.
 - Then wind Nb_3Sn outer windings, stress management structure isolates the ventilation of the two regions
 - React the Nb_3Sn with Ar purge, hold O$_2$ purge on Bi-2212.

- Quench protection – need to investigate microquench stability of Bi-2212, very different quench strategy from that with all-Nb_3Sn dipoles.
Accelerator Issues

• Synchrotron radiation: power/length \(\tilde{P} \propto E^4 I / \rho^2 \)

 critical energy \(E_c \propto E^3 / \rho \)

LHC: \(E = 7 \text{ TeV} \quad P = 0.22 \text{ W/m} \quad E_c = 44 \text{ eV} \) (hard UV) scatters, desorbs

LHC Tripler: \(E = 20 \text{ TeV} \quad P = 14 \text{ W/m} \quad E_c = 1.2 \text{ keV} \) (soft X-ray) absorbs!

 – Use photon stop:
 Instead of intercepting photons at \(\sim 10 \text{ K} \) along dipole beam tube, intercept between dipoles on room-temperature finger.

 – Soft X-rays actually easier to trap that hard UV
Photon Stop

- Photon Stop
 - Photoemission yields vanish for E > 100 eV
 - Vertical penetration through flux return (coils have clearance)

Effect on $<b_3> \sim 10^{-5}$ cm$^{-2}$
Photon stop swings:
clears aperture at injection energy, collects light at collision energy

150 W/stop collected @ 1 W/cm²
heat transfer to Liquid Xe (160 K)

Same refrigeration power for Tripler as for LHC!
3) Rapid-cycling Injector for LHC

- For luminosity upgrade of LHC, one option is to replace the SPS/PS with a rapid-cycling superconducting injector chain.
- 1 TeV in SPS tunnel \rightarrow 1.25 T in 25T hybrid dipole: flux plate is unsaturated, suppression of snap-back multipoles at injection.
- SuperSPS needs 5 T field, \sim10 s cycle time for filling Tripler \rightarrow >1 T/s ramp rate
- A pacing issue for design is AC loss during ramp
Again block-coil geometry is optimum!

Block-coil dipole:
Cables are oriented vertically: $\vec{B} \parallel \hat{n}$

Result: minimum induced current loop, minimum AC losses

$\cos \theta$ dipole:
Cables are oriented azimuthally: $\vec{B} \perp \hat{n}$

Result: maximum induced current loop, maximum AC losses

We demonstrated this suppression of AC losses in TAMU2 test!
Nb$_3$Sn Super-SPS dipole?

6 T block-coil suppresses extrinsic losses

- flux plate suppresses snap-back

Bronze-process fine-filament wire suppresses intrinsic losses

- Lowest cost Nb$_3$Sn wire

Efforts until now have concentrated on NbTi $\cos \theta$ dipoles – misses on both counts.

This is an unexpected bonus from high-field magnet development.
Magnets are getting more efficient!

Field strength (T) vs. coil area (cm2)

- **quadratic B dependence**
- **LHC (7 cm)**
- **RHIC (7 cm)**
- **Tevatron (5 cm)**
- **SSC (5 cm)**
- **Pipe (2 cm)**
- **TAMU4 (3 cm)**
- **Bi-2212**
- **LHC Tripler (5.6 cm)**
- **Nb$_3$Sn**
- **HD2**
- **microbore (3x2 cm)**

Materials:
- **NbTi**
- **SuperSPS**
- **HD2**

Magnet technologies advancing with increased efficiency.
4) Kill electron cloud effect

• ECE will limit LHC luminosity, beam intensity from ILC damping rings.

• Suppress electron multipacting by locating an electrode on bottom of beam screen, bias +100 V, suppresses all secondary electrons.

Fix for ECE in:

• RHIC
• SPS
• LHC
• ILC damping rings
5) Polyhedral superconducting cavities for linear colliders

Conventional superconducting cavities are made by spinning Nb foil, then e-beam welding, then cleaning inside the 9-cell string.

Welds alter grain structure, affects I_{max} at waist, E_{max} at neck.

Difficult to clean, QC inside completed string.
Suppose the cavity string is assembled from polyhedral slices.

Current flows in r/z in accelerating mode: unaffected by normal slits.

Current flows in ϕ for deflecting modes: Q-spoiled, by normal slits.
Each segment is fabricated, cleaned, QC before assembly

- a) flat s.c. strip
- b) copper bar drilled with cooling channels
- c) bend to contour
- d) EDM cut contour
- e) fit s.c. foil to Cu
- f) weld seams, HIP to bond
- g) EDM cut to 30° wedge

cooling channels → no pool-boiling cryostat

weld seams on outside → simple assembly/alignment
AARD: Skunk Works for the Future of HEP

HEP lives at the edge! At any given time:

New discovery requires more energy/luminosity than we have today!

We have to find a way to build a next discovery machine for the same cost as the last one!

AARD is *the place in HEP* that supports long-term development of technologies that can make this possible.

AARD needs shelter: its mission is not to simply augment today’s programs.

It makes our future possible!
Many of the innovations in accelerator physics and technology happen at the universities

- Superconductors & magnets:
 - Berkeley, Ohio State, Texas A&M, U. Wisconsin,
- Superconducting cavities:
 - Cornell, Stanford
- Laser, plasma acceleration:
 - Berkeley, Columbia, UCLA, U. Maryland, Stanford, U.Texas, USC
- Beam cooling:
 - Indiana U., U. Michigan
- Beam dynamics:
- $\mu\mu$ colliders, ν factories:
 - IIT, UCLA, NIU

AARD is the only source of support for these programs.
AARD has made extremely effective use of the SBIR program

- In the development of superconducting materials, the AARD program has maintained a highly effective synergy between the magnet builders and the superconductor manufacturers.
- The SBIR program has provided a vital stimulus for the steady and impressive improvement in superconductor performance – first in NbTi (x2), then in Nb$_3$Sn (x2), and now also in Bi-2212. This stimulus/response has operated to HEP’s benefit for ~25 years. It is alive and well today and is developing the conductors we will need for the LHC Tripler.
Hadron colliders are the *only* tools that can directly discover gauge particles beyond TeV

- Predicting the energy for discovery is perilous.
- Example: for a decade after discovery of the b quark, we ‘knew’ there should be a companion t quark. But we couldn’t predict its mass. Predictions over that decade grew (with the limits) $20 \rightarrow 40 \rightarrow 80 \rightarrow 120$ GeV
- 4 colliders were built with top discovery as a goal.
- Finally top was discovered at Fermilab – 175 GeV!
- In the search for Higgs and SUSY, will history repeat?
Evolution of the gluon spectrum

Assumptions:
• Luminosity grows x3 with adiabatic damping
• Luminosity needed to produce a given number of particles of mass m (assuming gauge couplings constant) scales with m^2
• So twice the mass scale requires 4/3 the luminosity.

Triple the energy – double the mass reach
Discovery of sparticles

- Ellis et al have calculated the masses of the lightest 2 visible sparticles in minimum supersymmetric extension of the Standard Model (MSSM), constrained by the new results from astrophysics and cosmology.

- ▲ = constrained by Ω, WMAP and lab data
- ● = observable in WIMP searches ($\sigma > 10^{-8}$ pb)
- X = constrained by lab data, observable @ LHC
- ▼ = constrained by lab data, unobservable @ LHC

Ellis et al. 2004