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Research Focus

1. Advanced Accelerating Structures
1. Comprehensivedielectric structure program - theory

& simulation, construction & high-power testing.
2. Novel structureinvestigation - photonic band gap, |eft-

handed meta-materials.
2. High-Power/High-Brightness Electron Beams

1. Fundamental Beam Physics = beam generation,
propagation, & characterization.

2. High-current beam production = for beam-driven
wakefield acceleration & RF generation schemes.

3. Beam dynamicsin wakefield structures - BBU control

3. Support of existing HEP programs
1. Positron sourcefor ILC
2. Lab Astrophysics

- 3. Providing facilitiesfor external user’sresearch
program.
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The Group

Staff/Engineer: (7)
W. Gai (group leader), M. Conde, R. Konecny, W. Liu (visiting
scientist), J. Power and Z. Yusof, C. Jing (supported by Euclid).

Current Students: (3)
Graduates: F. Gao, Supported by Resear ch fund, H. Wang, Supported by
LDRD fund, S. Antipov, Supported by I T Physics

Technician: (1)
F. Franchini

Support:
Strong Support from ANL Management (3 LDRDS)
Mechanical/Electrical/Laser: HEP, Chem and APSresources (0.5 FTE)

ES& H: HEP safety coordinator.

Previous Ph. D. Thesis Students: (7): Ph. D. students: C. Jing, 2005, Euclid
, P. Zou, 2002, Intel; N. Barov, 2000, Far-Tech; E. Colby, 1998, SLAC; J.
Power, 1996, ANL; C. Ho, 1993, Semens Medical; J. Rosenzweig, 1987,
UCLA.

Recent Mastersand Under graduates: G. Beztel (NIU), MS, J. Hsin, J. Walsh,
seniors, Physics (UChicago). T. Quan, EE senior , (Purdue). Morethis
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List of Accomplishments

Wakefield Acceleration Program
- Developed the direct wakefield (drive-witness) measurement technique
- Demonstrated many wakefield accel eration scheme
- collinear wakefield acceleration in dielectric & metallic structures, and plasmas
- dielectric-based two-beam acceleration
- multimode wakefield acceleration
- enhanced transformer ratio with a ramped bunch train
- First observation of plasma wakefield acceleration in underdenseregime (non-linear) (with UCLA)
RF Photocathode Gun Development
- Operating a 100 nC RF photocathode gun and linac
- Generated and transported both flat and ramped high-current pulse trains
- Observed Schottky-enabled photoelectron emission in RF gun
Advanced Accelerating Structure Development
- First high-power test of dielectric traveling wave accelerators (at NRL);
- Discovered new multipactoring regime in dielectric structure.
- Invented ways to couple the RF into the structures.
Other notable contributions:
-  TESLA Test Facility photoinjector.
- Hrst wakefield measurement of a detuned SLAC/NLC structure
- Laboratory astro-physics experiment.
- Beam dynamics modeling of the ILC positron beam.
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Collaborations

* Naval Research Lab/SLAC/Tsinghua Univ.

- A dedicated X-band facility to test X-band dielectric structures established with
SLAC shelp. Advanced structure devel opment.

* ANL APSand ES Division

- High quality electron FEL applications and positron beam generation studies for
L C and BES research. ILC accelerator issues.

* CERN and DULY Research Inc.
- High power generation using dielectric as decelerator. (SBIR funded)
* Euclid Concepts

- High dielectric constant material development and engineering processing.
Tunable dielectric materials. Ramped bunch train experiment (SBIR funded).

* Univ. of Chicago, Hawaii/UCLA

- Laboratory astrophysics, Radio and fluorescence astrophysics.
* lllinoisInstitute of Technologiesand UT Austin

- Advanced structure studies.
* Maryland and NIU

- Diagnostics on high intensity and high brightness beam.

Pioneerin Office of Science r
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The Argonne Wakefield Accelerator
(AWA) Facility*

Drive

Linac &

Gun Steering Coils

Single bunch operation
- Q=1-100 nC
- Energy=14 MeV

- High Current = 10 kAmp

Bunch train operation
- 64 bunches x 50 nC - 50 ns long

e 4.5 [T ey

Wakefield
Structure
Quads Spectrometer
Experimental
Chambers
YAG3 YAG4 YAG5 !
A1CT2 i i A Eﬁgﬂlay Cup

*World"s Highest Q RF Photoinjector
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AWA Photocathode
Laser System
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Electron Beam Driven Wakefields

> A new way to power the accelerating structure by transporting the
power in the electron beam.

» Advantagesover RF powered structures
» Short pulse operation can increase the breakdown threshold.
» More material options:

» Low Q and high Q structures produce the same wakefield.
More material options.

» Low and high group velocity structures can both be used for
wakefield acceleration.

» Simpler geometry, easy to construct, easy to damp HOM.

Drive Beam

» Applications L — Diel
- Collinear wakefield acceleration
- Two-beam acceleration

Deceleration 12 ‘" Accel eration



(#1) Wakefield Scaling in Structures

] | O W(2) »% expé— 2?’3 ?;cos(kz)
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Keysto the success. _ _
. . ] Wakefield Amplitude Dependence on
Drive beam, drive beam and drive beam! Aperture
- Ener aqy - 100000 .
- Charge - g 1 .
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10 nC a=0.1 mm ? 5 GV/m. But our current 0.01 0.1 1 10
beam limited our structure ~ a=2-5 mm. Inner Radius a (mm)
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(#1) Wakefield signal detection

Direct Wakefield Measurement
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(#1) Comparison of Spectrum with
Simulation

. welEn e
t~0.3ns

t~0.5ns

Waveform and Spectrum of
the Simulated Wakefield
signal
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Most Recent Result:
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Power spectrum

Doubled gradient from last year:

83 nC ~45 MV/m (2006) M M
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(#1) Heading toward +100 MV/m

* Progress so far...

- Acceleration Gradient ~10 MV/m before initial
completion of facility upgrade (prior to 2004)

- Acceleration Gradient to ~20 MV/m (doubled in
2005)

- Acceleration Gradient to ~45 MV/m (doubled in
2006)

* Next steps...
- Smaller structure aperture
- Improved beam quality
- Pulse train development
- Implement CsTe Cathode

A Pioneering Office of Science
#aW Science and U.S. Department
@ Technology of Energy
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(#2) Dielectric Two-beam Acceleration
Experiment (2000)

Marralized Moasiired Witiess Centrod Enargy vs Dilay
T L] L T

=100 50 a =0 00 150

nomanal defay (ps}
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(#2) Planned Two-beam, Staged,
Acceleration Experiment

Accelerator

Stage |
Decelerator

2 stage example:

Drive beam: 64 bunches of 50 nC, each separated by 0.78 ns,
total 50 nslong.

Total energy gain: DE=120 MeV (2 deceleration & 2
acceleration stages

Office of Science
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(#3) Schottky-Enabled photoemission:
Generating electrons with low energy photons.

Camera g

Cathode [ ] X | — Beam dump

YAG

ICT

_ i Mirror .
Solenoid 5 eV 3.3 eV

Solenoid

1. High brightness electron beam — minimize thermal
emittance from cathode.

2. Experimental Determination of Mg photocathode Field
enhancement 3 (PRL 09/04)

Pioneering Office of Science r"
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of Energy _.‘
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(#3) Determining the Field Enhancement

Factor
F O (MVim) ' : . '
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This is a new and viable technique to
realistically determine the field enhancement
factor of the cathode in a photoinjector

Charge (nC)
o
o
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E@) =E. . sNn(d)

a = Jlpe,

At threshold, Q = 0. This allows us to
make a reasonable estimate of the
maximum b.

)

A

Pioneering
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Office of Science
U.S. Department
of Energy

20

<2



(#4) High Brightness Beam Developments:
Measurements and Applications.

1. AWA Operation is outside of well-
establish (~1nC) photoinjector parameter
space

— Single bunch: Q,=1nC-100nC; e, =5
mm mrad — 180 mm mrad; Z.,,, = 6 psec — 13

psec;
— High-current pulses train: 2-64 pulses (Q  Spectrometer
up to 50 nC). with 4 beams

2. Challenging characterization and modeling
— Diagnostics must cover a large dynamic range
— Beam properties must be understood over the length of the pulse train

3. Development of new beam diagnsotics
— 2X2 pepper pot grid for 4D phase space measurement
— OTR-like emittance diagnostic for (low gregime) photoinjector (UMD)
— Time resolved BPM using EO effect (NIU)

Pioneerin Office of Science r"
o Science a % d U.S. Department
Technology of Energy __.‘
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(#4) Facility Improvement Example:
Upgraded Imaging System

Online

Resolution &
~ Calibration

\

YAG:Ce
dia. 50 mm
thk. 0.1 mm

USAF Target
= R |
y I “ CREN
- FEE |
4SS
RNy
I l I 20 M= "
AEMD nnnnn 400 EDV' B00

1. Zero Depth-of-focus
2. Variable-magnification
3. Improved light collection

Office of Science
U.S. Department
of Energy
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Design, Construction and EM Simulations of
the Modular DLA Structure

W
m Port I
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High Power Structures
Tested at

NRL

Material AlLLO, Mg,Ca, TiO,
Dielectric constant 9.4 20
Loss tangent 2x104 3x10-4
Inner radius 5mm 3 mm
Outer radius 7.185 mm 4.567 mm
R/IQ 6.9k?/m 8.8k?/m
Group velocity 0.134c 0.057c
RF power for IMV/m 80 kW 27 KW
gradient
Demonstrated Gradient 8 MV/m 7.2 MV/m
Principal Problem Multipactor Breakdown at joints

- Next Step:

—2>Quartz, Cordierite, TiN coated,...
—->More structures (different coupling schemes)
—->Commission a compact DLA accelerator

i
=
-



NRL Setup
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Discovered Anomalous High Power RF Absorption iIn
DLA Structures due to New Multipactor Regime*

Normalized Power
Transmission (%)

Joint breakdown

Absorption scales
with aperture

Alumina

100 15 5O o ¢
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*PRL May, 2004
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Schematic of Positron Source and Pre-
Accelerator Layout for ILC [

Target (1.4 cm Ti), Adiabatic Matching Solenoid (5 — s
0.25 Tesla). 15 Linac Sections (~ 8 MeV each). ]

250

Bz ITI'.‘Ha]

Target Adiabatic Linac with soleno
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5cell p mode iris loaded L band linac, the aperture D=5cm, T is about 0.74, E,T=12MV/m, P=4.4MW. Total energy 5‘
gain=8.4 MeV, Q=25000, r/Q=613 Ohm Zd
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6-D phase distribution @ 5 GeV (before

damping ring)
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seiagy THE UNIVERSITY OF

Undergraduate Student |#8 CH[CAGO
Projects at the AWA

Which diagnostic can measure the
beam-centroid with better
resolution, a YAG screen or a
stripline? (J. Hsin)

Raw BPM signal
6 GHz scope

How can we use the stripline to
measure the timing-jitter
between the laser and RF
systems? (J. Walsh)




Ramped Bunch Train to Enhance Transformer
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Left Handed Metamaterials

At AWA we study, design,
produce and test artificial
materials (metamaterials) with
different electromagnetic
properties.

Split ring resonator structure

ig K fl\ ("’ fB\ _
1: ) A —==dn
g ! [~ f,GHz

-10 }

-15 I

-20

Waveguides, |loaded with dispersive materials possess interesting
properties. Example: Transmission through overcritical waveguide.

Transmission through empty and

10

1 -loaded waveguide, dB.

’ ' % W O
-10 /*\K \L 10 15f GHZ K, =— n(W)egl H
=20 \/ \ \L\CUtOf’f ? " 7GHz @
-30 \ [ ”J Transparency at 4GHz _ _

N —n%p Resonant values of dispersive

22 d can make a waveguide transparent
sof AN
-60 ! below the cutoff frequency
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Auger Detector Calibration

\ Nitrogen Fluorescence Yield in Air

2:| rT I LU |I

| Provided calibration of the

s s Argonne Wakefield Accelerator E Nitrogen Fluorescence spectra
1.85_ v Argonne Van de Graaff Accelerator _E in the 3-14 Mev energy range
1.61 E for the Auger Collaboration.
1.4 —
1.2 —+ +—j
1F .
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0.6 —

0.4 -
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Advanced Diagnostic Development

13 um UNIVERSITY OF
o pim kapton foil @’
Ni mes
203‘0 Ip/ band pass filter
Q

—» <+— Gap=1.4 mm Q4

A specially design low-energy emittance diagnostic (ideally suited for
RF photocathode guns)
. An Optical Diffraction Radiation - Dielectric Foil Radiation

Interferometer (ODR-DFRI)
Dielectric foil allows for a large angular acceptance of the light cone

. Recently Observed ODR-Dielectric Foil Radiation Interferences at
ANL-AWA at 14.2 MeV (Oct. 7, 2005)

*Diagnostic designed & built by UMD. Experiment performed at ANL. 35



Argonne
Advanced Wakefield Accelerator

Photocathode electron source
1-100 nC single bunches

15 nC bunches in 2-bunch ‘train’
LLarger bunch trains (4-64) possible
Equipped with standard diagnostics

NIU is planning to use AWA for: ¢

= Experiments to validate space-charge algorithms in beam simulation codes

= Measuring beam degradation due to multibunch wakefields (including
coherent synchrotron radiation in magnetic bends)

= Developing and testing new beam diagnostics, including
v interferometric measurements of longitudinal charge density, and

v’ electro-optic measurement of three-dimensional charge density




21GHz power extractor
- Experimentally Tested at CTF (2002)

ANL designed with DULY, and beam tested at CLIC TEST
FACILITY. More works to follow. Improved PETS at AWA.

Choke

Coupler

Flange

Power
combiner

Didectric-
|oaded tube

Didectric
pipe

3-D moddl of the DULY 21GHz Cross-section of the DULY 21GHz
wake fields extractor wake fields extractor
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Summary:

Progresson Accelerating Structures and Beam Physics

-Beam generation and diagnostics at the AWA facility. High-Charge, High-
Brightness, and Schottky-enhanced Photoemission stu es.

-High-gradient wakefield excitation. Beam transmission at 90%. ~ 45 MV/m
gradient excited.

-High-power testsof DL A structuresat NRL. Gaining comprehensive
knowledge of physics and engineering issues.
Future Plans.

-High-charge pulse train and high RF power generation. Investigate high-
gradient generation and sustained acceleration.

-X-band dielectric structures. Construct a compact accelerator at NRL’s
Magnicon facility. Investigate accelerator physicsissues (new structures,
geometry, materials and schemes).

-Demonstration high total energy gain. Use dielectric TBA technigque developed
a AWA.

-External collaborators. Accommodate their experimental requests.

Pioneerin | Jfice of Science ﬁ
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