Computing Tools and Simulations for Accelerators

Panagiotis Spentzouris

DOE Annual Program Review
Overview

• Many simulation application activities in APC
 – utilizing different computational tools
• Here, focus on the tools development and computations that involve
 – large scale computing
 – general codes developed by FNAL/APC or FNAL/APC-led collaborations
 • SciDAC2 COMPASS collaboration
 – computations performed using FNAL/APC tools
But first, a glossary

- In case you would like to revisit these slides
 - SciDAC == Scientific Discovery through Advanced Computing, a DOE program
 - AST == Accelerator Simulation & Technology, the SciDAC1 accelerator modeling project
 - COMPASS == Community Petascale Project for Accelerator Science and Simulation, SciDAC2 collaboration
 - HPC == high performance computing
 - CHEF == Collaborative Hierarchical Expandable Framework, FNAL developed optics framework
Milestones

• '01-... multi-particle dynamics (Run-II, ILC)
 - Members of the AST SciDAC collaboration
 • Develop HPC capabilities (the Synergia project)
• '04-... single-particle dynamics (ILC,...)
 - The CHEF project focuses on ILC design
• '06-... electromagnetics (ILC,...)
 - Begin utilization of SciDAC developed tools
• '07-..., multi-physics tools and applications (Run-II, LHC, ILC,...)
 - Leading the COMPASS SciDAC2 collaboration
The COMPASS collaboration

• COMPASS wins SciDAC2 award in April of '07, after a 6 month proposal writing and collaboration forging period!
 - Project funded by HEP, NP, BES, and ASCR, at ~$3M/year for 5 years

• COMPASS is the successor of the AST SciDAC1 project
 - But includes more activities & participants

The Community Petascale Project for Accelerator Science and Simulation collaboration
Fermilab and COMPASS

- COMPASS <compass.fnal.gov> aims to provide both HPC accelerator modeling tools and applications
- The APC/CD Computational Physics for Accelerators group
 - leads the collaboration
 - plays a major role in the development of beam-dynamics tools and applications
 - participates in electromagnetics applications relevant to the FNAL program
- FNAL COMPASS funds ~$475k/year for duration of project (FY06 @ $150k/year)
FY07 activity focus

- Utilize mature 3D space-charge capabilities
 - Finalize Booster studies & study ILC DR and RTML
- Develop realistic multi-physics tools for Tevatron simulations (3D beam-beam + impedance)
- Study ILC Low Emittance Transport design
 - Adapt/develop CHEF tools and applications
- Extend Synergia2, our parallel beam dynamics framework, to enable multi-physics capabilities
- Engage in electromagnetics modelling activities, focusing on ILC
 - Utilize and extend existing tools
Fermilab SciDAC development: the Synergia framework

Synergia1: user interface and space-charge
Synergia2: Multi-physics, state of the art numerical libraries

Synergia: mature code (JCP06), participated in International space-charge benchmark effort lead by I. Hofmann

Activity at 1.3 FTE

PAC07, TUZBC02

9/26/2007
Finalize Booster studies

- Utilize Synergia simulations to quantitatively characterize halo generation in the Booster
 - New technique for halo characterization using beam shape (NIMA570:1-9,2007)
- Effort @0.5 FTE, plus grad student
ILC RTML and DR

- Study space-charge effects (halo creation, dynamic aperture) using Synergia (3D, self-consistent).

 - Activity level at 1FTE
CHEF

- Started in mid-2003, with the goal to develop a
 - Convenient, intuitive, interactive code for general purpose *optics* computations
- General framework applicable to problems relevant to future machine design.
- Code base currently used at FNAL
 - to study emittance preservation in the ILC. In FY07 developed linac specific functionality (e.g. wakefields, RF structures).
 - and in Synergia (3D space charge framework).

Activity @ 1.5 FTE level
CHEF ILC Main Linac applications

- Study of static tuning of misalignments in the ILC Main Linac
 - Confirmation of results obtained by other codes.
- Begin study of steering performance with dynamic effects
 - Implement such effects in CHEF
- Utilize FermiGrid resources
- Results reported at PAC07 (THPMN104), see also poster by N. Solyak
- Effort level: 1 FTE
Detailed application example: Tevatron beam-beam simulations

- **Motivation:** comprehensive simulation of instability sources and their effects
 - strong-strong beam-beam interactions
 - impedance and head-tail instabilities
 - Multi-bunch collisions
 - Each Tevatron bunch sees 2 head-on IPs + 136 long-range IPs
 - Need simulation which includes all relevant effects

- Coupled motion
- Helix trajectory
- Beam-Beam
- Impedance
- Chromaticity
- Multiple-bunch interactions

- Extend BeamBeam3D (SciDAC)

Activity level @ 1FTE
3D strong-strong beam-beam model validation

Use data from VEP-2M: e^+e^- at 500 MeV with comparable vertical and longitudinal spatial dimensions

FIG. 1. Notation for the synchrotron modes of colliding bunches.

\[\xi = \frac{N e r_e B}{4 \pi \gamma \sigma^2} \]
Impedance model validation

- Compare simulation to expected behavior:
 - Strong head-tail shows the expected parabolic growth at threshold
 - Weak head-tail obeys universal curve for normalized growth rate versus the head-tail phase

\[
\text{head-tail phase} = \frac{\xi Q}{\eta} = \frac{2\pi \xi Q}{L \eta}
\]
Put it all together: one-on-one bunch Tevatron simulations

"nominal" beam

4 times "nominal" beam

"nominal" == pbar = p

Effects not enough to create beam instability. Need even more realistic model!
Add more realism

Try multiple bunch run

1 head-on + 2 long-range + 3 reflected long-range IPs

Distance from head-on IP to first long-range IP = 10.5 RF bucket lengths = 59.3 m
beam separation at adjacent long-range IPs ~0.8 mm
beam separation at reflected IPs ~ 3.5 mm
2 on 2 bunches, with nominal impedance

“Nominal” bunch intensity. Peak broadening is seen due to multi-bunch interactions.

4 times “nominal” bunch intensity. The pi mode cannot be resolved anymore.
Starting to see instability?

After 20k turns (~0.5 s @ flattop), the beam size is increased by ~20%

and the beam position appears to be changing.

Simulation took ~1 day on 48 2.4GHz CPUs, with ~100k macroparticles/bunch
Electromagnetics

- Access to state-of-the-art codes through SciDAC
 - Develop local expertise
 - Provide simulation support to ILC crab cavity design
- Starting to get involved in wakefield calculations, to
 - Utilize in beam dynamics models
 - Cavity design support
 - Activity @ 0.3 FTE level, HIGHLY LEVERAGED!

MP phenomena in LOM Coupler

Maximal value for ECF corresponds to the field level about 36 MV/m

MP in LOM Coupler at 46 MV/m
Questions?