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Overview

• Flavor physics 

• at the Tevatron and at the B-factories

• in the Fermilab theory group

• Research during the past year



Flavor Physics at the Tevatron

• Flavor physics is an 
important part of the 
experimental program 
of CDF and DZero.

• Contrary to B-
factories, all b-hadrons 
are accesible at hadron 
collider: Bs, Λb , ...
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Flavor in the theory group

• Goals

• Investigate possible new physics effects in 
flavor changing processes.

• Separate and calculate QCD effects 
associated with higher scales. → Effective 
Field Theories

• Calculate low energy QCD matrix elements. 
→ Lattice QCD

• Contribute to FNAL experimental program. 



Theoretical aspects of flavor physics 

• Many scales, many different tools
• Fermilab theory group covers the entire range

• Not the case at most universities. 
• FNAL theory group provides expertise on the various 

aspects relevant to experimentalists from universities.

QCD perturbative QCD electro-weak New Physics

mbMNmu MZ MX

CHPT LQCD
HQET

NRQCD
SCET

“Fermi Theory” SUSY, xD, ...
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Continuum limit 
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Work in the past year
• New Physics

• Flavor structure of littlest Higgs with T-parity. J. Hubisz, hep-ph/
0512169

• Constraints on B- and Higgs-physics in MSSM at large tanβ. 
M. Carena, hep-ph/0603106

• Old physics
• Perturbative lattice-to-continuum matching for BK. TB, 

Phys.Rev.D72:074506, 2005

• Constraints on form factors entering semi-leptonic decays and 
extraction of  |Vub| from B→πlν. TB and R. Hill, PLB 633, 2006 

• New states above charm threshold. E. Eichten and Ch. Quigg, 
Phys.Rev.D73:014014, 2006

• Electromagnetic logarithms in B→Xs,d l+l-. E. Lunghi, hep-ph/0512066

• NNLO analysis of photon energy cut effect in B→Xs,d γ. TB, 
PLB 633, 739, 2006, and PLB, in press. 

• Resummation for collider processes with EFT methods. TB, hep-ph/
0605050



Flavor of a little Higgs with T-parity

• In little Higgs theories same-spin partners 
of SM particles are introduced to cancel 
quadratic divergence in Higgs mass to 
one-loop order.

• T-parity symmetry ensures that heavy 
partners are only pair-produced. 
(Otherwise problems with precision EW.)

• →New CKM-type matrices for coupling to 
T-odd heavy fermions and gauge bosons 
VHu and VHd with VCKM= (VHu)†VHd.

J. Hubisz, G. Paz and S. Lee, hep-ph/0512169



Flavor of a little Higgs with T-parity

• Jay Hubisz and collaborators study 
constraints from meson mixing.
• Strong constraints, but ∃ scenarios 

consistent with experiment.
• Are now also including constraints from 

rare decays.

J. Hubisz, G. Paz and S. Lee, hep-ph/0512169
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Figure 1: Box diagrams involving T-odd gauge bosons and scalars that contribute to particle
anti-particle mixing in the littlest Higgs model with T-parity. There are other diagrams,
such as those with two neutral scalars running in the loop. These, however, sum to zero. We
show only the classes of diagrams which contribute to the functions given in the Appendix.

5 Little Higgs contributions to neutral meson mixing

We now calculate the corrections to the relevant effective Hamiltonians in the littlest Higgs
model with T-parity. The dominant contributions arise from box diagrams which have
T-odd fermions running within the loop, along with T-odd gauge bosons. There are also
sub-dominant effects coming from the extended top sector of the model, which we briefly
discuss as well.

5.1 T-odd sector contribution

From the T-odd sector we get several new contributions to neutral meson mixing. These
contributions come from box diagrams that contain heavy gauge bosons and T-odd fermions,
and in general are suppressed by a factor of v2/f 2. However, this suppression is vastly over-
come in most regions of parameter space due to the absence of a TeV scale GIM mechanism.
The diagrams can be classified according to the gauge boson running in the loop: WH , ZH ,
and “mixed” ZH and AH . These are shown in Figure 1. We have calculated these diagrams
both in the ’t Hooft-Feynman and the unitary gauge, and we now review the results.

The diagrams with internal W±
H and charged Goldstone bosons give a contribution

to the effective Hamiltonian which has the same functional form as the SM calculation,
with some simple replacements. For the heavy neutral gauge bosons, ZH and AH , we have
apart from the WH-like diagrams, also “crossed” diagrams where the gauge bosons attach
to opposite vertices on one side of the box. After summing over the two types we find that

13



B- and Higgs-physics in MSSM

• At large tanβ, correlations between

• Bs-mixing, Bs→µ+µ-, Bs→Xs γ 
• and heavy Higgs search pp→H/A→τ+τ-

• Complementary constraints from B-
physics and collider search for H/A.

M.Carena, A.Menon, R.Noriega-Papaqui, A.Szynkman and C.E.M.Wagner, hep-ph/0603106.

present experimental bounds:

BR(B0
d → µ+µ−) < 2.1 × 10−7 BaBar [34], (6.1)

BR(B0
s → µ+µ−) < 2.0 × 10−6 CDF [35] . (6.2)

The B0
s,d-B̄

0
s,d mass difference in turn receives several contributions:

∆Ms = |(∆Ms)
SM + (∆Ms)

H±

+ (∆Ms)
χ±

+ (∆Ms)
DP| ≡ (∆Ms)

SM|1 + fs| (6.3)

(by definition ∆Ms is a positive definite quantity). For large tanβ and non-negligible

At the contribution (∆Ms)DP of the double scalar penguin (DP) shown in fig. 14 is

the dominant correction to the SM contribution (∆Ms)SM. Both, (∆Ms)DP and the

contribution (∆Ms)H±

of the box-diagrams with top and charged Higgs bosons H± have

the signs opposite to (∆Ms)SM. While generally smaller than (∆Ms)SM, their sum leads

for large tanβ to a significant decrease of the predicted ∆Ms (i.e. to fs < 0) independently

of the choice of supersymmetric parameters. We will asses the relative magnitudes of the

double penguin, charged Higgs and chargino box diagrams in secs. 6.1.3, 6.1.4.

h0,H0,A0

bR sL

bRsL

h0,H0,A0

bL sR

bLsR

h0,H0,A0

bR sL

bLsR

Figure 14: Double penguin diagrams contributing to ∆Ms.

As is evident from the comparison of figures 13 and 14 there must exist a strong

correlation between the enhancement of BR(B0
s(d) → µ+µ−) and the suppression of ∆Ms.

In particular for 0 < (1 + fs) < 1 the experimental lower bound ∆Ms > 15/ps puts

an upper bound on the possible enhancement of BR(B0
s(d) → µ+µ−). Of interest is also

the case (1 + fs) < 0 corresponding to a very large negative (∆Ms)DP (that can be

realized for very special values of supersymmetric parameters) which has quite different

implications than the case 0 < (1 + fs) < 1. The main result concerning this correlation

has been presented in [29]. Our purpose now is to explore it in more detail investigating

in particular its dependence on the MSSM parameters and elucidating the impact of

the tanβ enhanced corrections to ∆Ms on the standard Unitarity Triangle (UT) analysis

which is necessary to determine the CKM matrix element Vtd needed to predict accurately

BR(B0
d → µ+µ−).
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as in ref. [25] in (5.10) one recovers the rule (4.4).6 However, when the corrections

depending on the top Yukawa coupling to the vertices of the effective Lagrangian are taken

into account, the true formula (5.10) for εGR
JI is more involved and cannot be obtained

from the rule (4.4) just by including the terms ∝ y2
t to ε′I(J) as in [25]. Formulae (4.3)

and (4.4) are then only the substitution rules allowing to translate the formulae of [25]

into ours.

6 ∆Md,s, B0
d,s → µ+µ− and B̄ → Xsγ

The B0
s,d → µ+µ− decays and the B0

s -B̄
0
s mixing attracted recently a renewed attention

due to the observation that for large values of tanβ their amplitudes can receive very

large contributions from diagrams depicted in figures 13 and 14 in which the black blobs

represent the flavour changing couplings
[

XS
RL

]JI
and

[

XS
LR

]JI
discussed in the preced-

ing sections. These contributions have been found to increase by orders of magnitude

the branching ratios for the rare decays B0
s,d → µ+µ− [20, 6, 21, 22] and to decrease

substantially the B0
s -B̄

0
s mass difference ∆Ms [23].

h0,H0,A0

bR

sL, dL

l−

l+

tan2 β tan β

Figure 13: Diagrams giving dominant contribution to B0
s,d → l+l− amplitudes at large

tan β.

As demonstrated in [20, 6, 21, 22], for tanβ ∼ 50 and non-negligible values of the

parameter At the B0
s,d → µ+µ− amplitudes are totally dominated by the diagram of

fig. 13. In the absence of any other constraints on the MSSM parameter space, the

corresponding branching ratios, which behave as |At tan3 β/M2
A|2, can be enhanced by

up to three orders of magnitude relative to the SM predictions and can even exceed the
6However, calculating ε′I(J) from the triangle diagram of fig. 1a of [25] with simplified G+ couplings

to up and down squarks would result in εGR
JI ∼ 10−2, much bigger than O(10−4) obtained with the full

G+ couplings given in [30]. In particular, we have found that for non-negligible sbottom mixing (if, say,

|Ab| ∼ |At|) neglecting in this vertex terms ∝ y2
t and ∝ g2

2 has dramatic effect on the cancellation in

(5.10). On the other hand, neglecting simultaneously the contributions of the vector self energies to ∆F̂G
R

and to ∆md does not affect it.
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h0,H0,A0 bRsL

bR bL

Figure 17: Additional diagram contributing to b → sγ or b → sg transition. The dot and

the cross denote the flavour changing coupling [XLR]sb and the helicity flip, respectively.

where
[

XS
]33

and
[

XS
LR

]23
are given in eqs. (3.22) and (3.27), respectively.

The last comment concerns the dependence of the B̄ → Xsγ amplitude on the CKM

matrix elements. In our scans presented in sec. 7 for a given set of the MSSM parameters

we use the value of |V eff∗
ts V eff

tb | determined consistently from the UT analysis as described

in the preceding subsection. We do not need therefore to implement the recipe of ref. [33]

for correcting the B̄ → Xsγ amplitude for new physics effects in V eff
ts .

7 Numerical Analysis

In this section we present numerical analysis of the dependence of ∆Md,s and B0
s,d → µ+µ−

on the parameters of the MSSM. We will also present the global analysis of these quantities

taking into account available experimental constraints, in particular the one from the

measured rate of the B → Xsγ decay. We present the results based on our complete

approach of section 2 which includes automatically the SU(2)×U(1) breaking corrections

as well as the dependence of the flavour changing couplings on the electroweak gauge

couplings. On some plots we compare these results with the one obtained by using the

approximation of sec. 3 based on SU(2) × U(1) limit and dominance of αs and the top

and bottom Yukawa couplings. The latter describe qualitatively the main features of the

MSSM effects but are not very accurate.

7.1 The Size of fs and fd

The parameters fs and fd introduced in eq. (6.3) and directly related to the ratio

∆Ms,d/(∆Ms,d)SM:

∆Ms,d/(∆Ms,d)
SM ≡ |1 + fs,d|

receive contributions from double penguins, charged Higgs boson box diagrams and chargino

box diagrams. As we have already said in sec. 6.1.4, for sparticles heavier than 500 GeV
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B and Higgs Physics at the Tevatron and the LHC:

 explore complementary regions of  SUSY parameter space

--  MSSM Higgs searches probe large tan     and MA regions via the inclusive

  process                                    => only small SUSY model dependence

--  Higgs mediated FCNC can enhance the rare decay rate                      up to

levels accessible at the Tevatron  => explores efficiently large tan     and MA region
! 
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•  Enhanced reach at the LHC
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!  Bs mixing and
     strongly correlated due to Higgs mediated flavor violating effects

Upper bound on new physics contribution based on CDF measurement:
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New states above charm threshold 

• Many new charm states observed in last 
three years.

• States near threshold: X(3872), Z(3934), 
Y(3940), Y(3943), Y(4260), ...

• Very difficult to analyze with LQCD

• ELQ use Cornell Coupled-Channel Model to 
study effect of light-quark pairs.

E.J.Eichten, K.Lane and C.Quigg, PRD 73 (2006) 014014



X, Y, Z ‘s  Status Table

Observed State JPC (c̄c) Alternative

Many            

Belle            

X(3872)            

Z (3934)            

Y (3940)            Belle            

X (3943)            

Y (4260)            

Belle            

Babar            

D D* Molecule

Hybrid
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!

!!
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2++

1++
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3
D1

Aspen Winter Conference, “Particle Physics on the Verge of Discovery”  Feb. 12-18, 2006    E. Eichten - Fermilab   51                                                                             



Semileptonic form factor shape

• CLEO, BABAR and Belle have measurements of partial 
B→πlν decay rates. 

• Fermilab and HPQCD have unquenched lattice results in the 
large q2-region.

• Both used simple pole parameterizations for form factor 
shape. Systematic uncertainty from form factor shape?
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CLEO [1] Belle [2]

BaBar [3] BaBar [4]

Figure 1: Experimental data for the partial B̄0 → π+#−ν̄ branching ratios and fit result shown
as solid line. The fit results from (2) with N = 1 and (5) with kmax = 2 are indistinguishable.
Note that the experimental data is binned: [1, 2, 3] give the result in three bins, while [4] gives
the result in five q2-bins. We plot the value and error divided by the bin width at the average
q2-value in each bin. For the three-bin results, we have slightly shifted the points to the left
and right to increase visibility.

with present data. We show that with a form factor determination at intermediate q2 values,
within the range studied in current lattice simulations, the experimental uncertainty on |Vub|
is well below 10%, whereas a form factor determination near maximal q2 would not translate
into a precise value of |Vub|. We introduce three shape observables, |VubF+(0)|, F ′

+(0)/F+(0)
and α, and discuss their sensitivity to the exact value of the bound. In Section 5, having
established our procedure, we present final values for |Vub|, and for F+(0), in terms of a single
lattice data point, F+(16 GeV2). We extract the shape observables, which are determined by
the experimental semileptonic data alone, and show how these observables provide important
constraints on the factorization approach to hadronic B decays.

2 Form factor parameterizations and extraction of |Vub|

Having restricted the shape of the q2 spectrum, or equivalently, of the form factor, by exper-
imental measurements, the central value and errors for |Vub| are determined by varying the
allowed form factor over all “reasonable” curves that are consistent with the data, and with a
normalization of the form factor taken from theory at a given value (or multiple values) of q2.
Defining this procedure precisely requires specifying a class of curves that contains the true
form factor (to a precision compatible with the data), and that is sufficiently rich to describe

2

TB, R. Hill, PLB633:61-69,2006

dΓ(B → π"ν)

dq2
=

G2
F

24π3
|$pπ|

3|Vub|
2|F+(q2)|2



Constraints on form factor shape

• Constrained series parameterizations

• Map                     . Improved convergence of 
series                   .   

• Bound           from unitarity.

• Much stronger bound                     from 
heavy-quark power counting.

F+(q2) =
1

P (q2)φ(q2)

∞∑

k=0

ak [z(q2)]k A =

∞∑

k=0

a
2

k

q
2
→ z(q2)

|z|max ≈ 0.5

A ∼

(

Λ

mb

)3

A < 1

TB, R.J. Hill, PLB633:61-69, 2006



Illustration: BaBar 5-bin data

• Current experiments (and lattice) measure intersect and 
slope, but cannot yet resolve curvature.

• No longer need for model parameterizations.

• R. Hill in contact with KTeV, CLEO-C, Babar and Belle 
experimentalists, to convince them to abandon model 
parameterizations.  
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B→Xsγ
• Important probe of FCNCs. Experimental 

matches theoretical uncertainty. 
• Large effort underway to evaluate rate to 

NNLO.
• Weak Hamiltonian to NNLO. Two- (and three-

loop) matching, three- (and four-loop) anomalous 
dimensions.  

• Two- (and three-loop) matrix elements of 
operators in Heff. 

• Experiments do not measure total rate.
• Take experimental cut Eγ>E0 =1.8GeV into 

account!



B→Xsγ

• Three relevant scales
• Hard scale mb ~ 5GeV
• Jet-scale MX~(mb Δ)1/2 ~ 2GeV
• Soft scale Δ=mb-2E0 ~ 1GeV

• All three scales perturbative.
• Have evaluated both soft- and jet-function to two 

loops.
• Using RG evolution in Soft-Collinear Effective Theory, 

we have resummed perturbative logs of scale ratios to 
NNLO.

Γ(B → Xsγ)|Eγ>E0=1.8GeV = H · J ⊗ S
TB, M.Neubert, PLB633:739-747,2006 and PLB in Press



Threshold resummation in momentum space

• Apply EFT methods to collider processes.
• Traditionally, resummation for hard processes is 

performed in moment space.
• Landau poles (in Sudakov exponent and Mellin 

inversion)

• Mellin inversion only numerically

• Solving RG equations in SCET, we have obtained 
resummed expressions directly in momentum 
space.
• Transparent physical interpretation, no Landau poles, 

simple analytic expressions for resummed rates.

• Reproduce moment space expressions order by order

TB, M.Neubert, hep-ph/0605050



RG evolution of the jet-function

• Associated jet-function j is Laplace 
transform of J(p2,µi).

form factor is infrared divergent and must be regular-
ized. When the SCET graphs are subtracted from the
QCD result, the infrared poles in 1/ε get cancelled and
replaced by ultraviolet poles. To obtain the matching co-
efficient we introduce a renormalization factor ZV , which
absorbs these poles. At one-loop order this gives [6]

CV (Q2, µ) = 1 +
CF αs

4π

(
−L2 + 3L − 8 +

π2

6

)
,

where L = ln(Q2/µ2) and αs = αs(µ). The two-loop
expression for CV can be found in [1]. The scale depen-
dence of the Wilson coefficient is governed by the evolu-
tion equation

dCV (Q2, µ)

d lnµ
=

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) ,

(1)

where Γcusp is the universal cusp anomalous dimension
of Wilson loops with light-like segments [13], which is
associated with the appearance of Sudakov double loga-
rithms. The quantity γV accounts for single-logarithmic
evolution effects. The anomalous dimension can be ob-
tained from the coefficient of the 1/ε pole term in the
renormalization factor ZV . Using the results of [12] it
can be calculated at three-loop order. The result is pre-
sented in [1].

The jet function J is defined in terms of the disconti-
nuity of a vacuum correlator of two quark fields, made
gauge invariant by the introduction of Wilson lines. It
obeys the integro-differential evolution equation [14]

dJ(p2, µ)

d ln µ
= −

[
2Γcusp(αs) ln

p2

µ2
+ 2γJ(αs)

]
J(p2, µ)

− 2Γcusp(αs)

∫ p2

0
dp′2

J(p′2, µ) − J(p2, µ)

p2 − p′2
.

We encounter again the cusp anomalous dimension, and
in addition a new function γJ , which has been calculated
in [14] at two-loop order, and whose three-loop coefficient
is determined in [1].

III. SOLUTIONS OF THE RG EQUATIONS

The exact solution to the evolution equation (1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

]

×
(

Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (2)

where µh ∼ Q is a hard matching scale, at which the
value of the coefficient CV is calculated using fixed-order
perturbation theory. The Sudakov exponent S and the
exponents an are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
,

aΓ(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3)

and similarly for aγV , where β(αs) = dαs/d lnµ is
the β-function. The explicit perturbative expansions of
these expressions valid at next-to-next-to-leading order
(NNLO) in renormalization-group (RG) improved per-
turbation theory are given in [1].

An important object in the derivation of the solution
to the evolution equation for J is the associated jet func-
tion j̃, which has originally been defined in terms of an
integral over the jet function followed by a certain re-
placement rule [15]. More elegantly, it can be obtained
by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫
∞

0
dp2 e−sp2

J(p2, µ) ,

where s = 1/(eγEQ2). The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞

ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
. (4)

Using the evolution equation for the jet function we find
that the associated jet function obeys

d

d lnµ
j̃
(

ln
Q2

µ2
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which is analogous to the evolution equation (1) for the
hard function. Inserting the solution to this equation into
the inverse transformation (4) we obtain
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[
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where η = 2aΓ(µi, µ), and ∂η denotes a derivative with
respect to this quantity. The above form of the result is
valid as long as η > 0 (i.e., µ < µi). For negative η the
singularity at p2 = 0 must be regularized using a star
distribution [1]. Relation (5) is one of the main results
of this Letter. It relates J to the associated jet function
j̃ evaluated at the scale µi, where it can be computed
using fixed-order perturbation theory. At one-loop order

j̃(L, µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 −

2π2

3

)
,

where in (5) the argument L is replaced by the deriva-
tive operator ∂η. The two-loop expression for j̃ can be
extracted from [14].
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FIG. 1. Dependence of the resummed result for F ns
2 (x,Q2)

on the hard (left) and intermediate (right) matching scales,
at different orders in RG-improved perturbation theory:
LO (dotted), NLO (dashed), and NNLO (solid). We use
Q = 30 GeV, x = 0.9, µf = 5GeV, and b(µf ) = 4.

the integrals over the functions Aq and Bq in (7) run
over the Landau pole of the running coupling αs(µ),
introducing an infrared renormalon ambiguity of order
Λ2

QCD/M2
X . No such problem arises for the integrals (3)

in our approach. The particular integral representation
of the solution (7) results from the fact that in the con-
ventional approach one solves a set of complicated par-
tial differential equations derived by diagramatic meth-
ods instead of the RG evolution equations in SCET [2,3].
Secondly, when performing the inverse Mellin transform
one needs to integrate the function GN over N along a
contour parallel to the imaginary axis. This integration
involves arbitrarily small physical scales |k2| ∼ Q2/|N |,
leading to a second encounter with the Landau pole. Dif-
ferent prescriptions have been proposed in the literature
for how to deal with this problem. In our approach in-
tegrals over the Landau pole never arise, because factor-
ization and resummation are directly performed in mo-
mentum space. The presence of these singularities in
the conventional approach is simply an artifact of the
way the resummation of large logarithms is implemented.
This also implies that there is no physics contained in the
Landau-pole singularities of expressions such as (7), and
hence it is questionable to what extent it is meaningful
to build a “renormalon phenomenology” based on these
singularities (see e.g. [17]).

Figure 1 shows the scale dependence of our result for
F ns

2 obtained with Q = 30GeV, x = 0.9, µf = 5GeV,
and nf = 5 light flavors. Varying the matching scales µh

and µi about their default values, we observe that the
residual scale dependence is strongly reduced when go-
ing to successively higher orders in perturbation theory.
In the literature the matching scales are often held fixed,
and the perturbative uncertainties are estimated by com-
paring results at different orders in the expansion. It is
evident from the plots that this would underestimate the
theoretical uncertainties.

V. CONCLUSIONS

Using methods of effective field theory we have in-
troduced a new approach to resummation of large log-
arithms for applications of perturbative QCD in which
Sudakov logarithms arise. Factorization and resumma-
tion are performed directly in momentum space, such
that the resulting formulae are free of unphysical infrared
sensitivities and provide a transparent separation of the
different scales in the problem. As an application we have
derived an exact all-order expression for the resummed
deep-inelastic structure function F2, which is much sim-
pler than corresponding results found in the literature.
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