Radiative Hyperon Decays an Overview

Uwe Koch University of Mainz NA48 Collaboration CERN

Hyperon 99, Sept. 27 - Sept. 29, 1999

Contents

- Short introduction
 - Results 1998
- NA48 Ξ measurements
- KTeV Hyperon measurements
 - Summary and outlook

Short Introduction

Hara 1964: Asymmetries in radiative decays of Σ^+ and Ξ^- vanish in the SU(3) limit. *But* ...

- First measurements for $\Sigma^+ \rightarrow p\gamma$ coming from bubble chambers
 - BR($\Sigma^+ \rightarrow p \gamma$)=(1.91 ± 0.4) x 10⁻³
 - And: first evidence for large negative asymmetry
 - $\alpha_{\gamma} = -1.03^{+0.54}_{-0.42}$
- Most precise measurement so far: E761 at Fermilab (1994):
 - High statistics (~ 30000 events)
 - negative asymmetry
 - BR($\Sigma^+ \rightarrow p \gamma$) = (2.32 ± 0.11 ± 0.10) x 10⁻³
 - $\alpha_{\gamma} = -0.72 \pm 0.086 \pm 0.045$

Experimental Results till 1998

No. of	Branching	Asymmetry			
events	ratio (10^{-3})	parameter	Laboratory Reference, Year		
		$\Sigma^+ \rightarrow p\gamma$			
24	1.91 ± 0.41		BNL	Bazin [7] (1965)	
31(61)	1.42 ± 0.26	$-1.03^{+0.54}_{-0.42}$	Berkeley	Gershwin [2] (1969)	
45	1.08 ± 0.15		CERN	Ang [6] (1969)	
30(46)	1.09 ± 0.20	$-0.53^{+0.38}_{-0.36}$	CERN	Manz [3] (1980)	
155	$1.27_{-0.18}^{+0.15}$		CERN	Biagi [9] (1985)	
190	1.30 ± 0.15	$-0.86 \pm 0.13 \pm 0.04$	KEK	Kobayashi [4] (1987)	
408	$1.45 \pm 0.20^{+0.11}_{-0.22}$		BNL	Hessey [8] (1989)	
(34754)		$-0.720 \pm 0.086 \pm 0.045$	Fermilab	Foucher ^a [13] (1992)	
31901	$1.20 \pm 0.06 \pm 0.05$		Fermilab	This result*	
		$\Xi^- \rightarrow \Sigma^- \gamma$			
11	0.23 ± 0.10		CERN	Biagi [14] (1987)	
211	$0.122 \pm 0.023 \pm 0.006$	1.0 ± 1.3	Fermilab	Dubbs ^a [11] (1994)	
		$\Xi^0 \rightarrow \Sigma^0 \gamma$			
85	$3.56 \pm 0.42 \pm 0.10$	$0.20 \pm 0.32 \pm 0.05$	Fermilab	Teige [15] (1989)	
		$\Xi^0 \rightarrow \Lambda \gamma$			
116(87)	$1.06 \pm 0.12 \pm 0.11$	0.43 ± 0.44	Fermilab	James [16] (1990)	
		$\Lambda \rightarrow n\gamma$			
24	1.02 ± 0.33		CERN	Biagi [17] (1986)	
287	$1.78 \pm 0.24 \pm 0.15$	_	BNL	Noble [18] (1992)	
1816	1.75 ± 0.15		BNL	Larson [19] (1993)	
		$\Omega^- \rightarrow \Xi^- \gamma$	-		
		Limits at 90% C.L.			
	<2.2		CERN	Bourquin [20] (1984)	
	<0.46		Fermilab	Albuquerque ^a [12] (1994)	

NA48 - Experiment

- main goal: measurement of $\operatorname{Re}(\epsilon^{2}/\epsilon)$
- 2 collinear beams for K_S and K_L Mesons
- Lifetimes for K_s Meson and Hyperons in same range (~10⁻¹⁰s)
- => Hyperons from Ks Target
- Spectrometer, excellent mass and vertex resolution
- Liquid Krypton calorimeter with excellent energy resolution

NA48 - The Beam Lines

NA48 - The Detector

NA48 - Hyperon Selection

- Select Λ by 2 dim cut in p(+)/p(-) vs. $m_{\pi\pi}$ plane
- 1.113 GeV < m(p π)
 <1.118 GeV
- free clusters (not related to a track)
- Analysed decay modes: $\Xi \rightarrow \lambda \pi^0, \ \Xi \rightarrow \lambda \gamma, \ \Xi \rightarrow \Sigma^0 \gamma$

NA48 - Results from 1997 Data

• Significant improvement for M_{Ξ} from decay $\Xi \rightarrow \Lambda \pi^0$: $M_{\Xi} = (1314.82 \pm 0.06 \pm 0.2) MeV$

• BR(
$$\Xi^0 \rightarrow \Lambda \gamma$$
) = (1.90 ± 0.34 ± 0.19) x 10⁻³ (31 events)

- BR($\Xi^0 \rightarrow \Sigma^0 \gamma$) = (3.14 ± 0.76 ± 0.32) x 10⁻³ (17 events)
- Total statistics for 1997, 1998 and 1999: ~10 times more.

NA48 - High Intensity K_S (High Intensity K_S Test 1999)

- First 8 hours test this year in August
- Beam intensity: 4 x 10⁹ protons / pulse (200 x ε data taking)
- Trigger downscaling by a factor of 10
- 20 30 days run foreseen next year

A and $\overline{\Lambda}$ (High Intensity K_S Test 1999)

Radiative Ξ decays (High Intensity K_s Test 1999)

NA48 - High Intensity K_S Run

	measured rates 1999		expected rates 2000		
	8 hours, downscaling 10		24 hours downscaling 1		30 days
Decay modes	total	burst	total	burst	total
Λ-> p π	8,50E+05	425,00	2,13E+07	4250,00	6,38E+08
Λ bar–> pbar π +	1,00E+05	50,00	2,50E+06	500,00	7,50E+07
$\Xi - > \Lambda \pi 0$	1,70E+04	8,50	4,25E+05	85,00	1,28E+07
Ξ->Λγ	1,00E+02	0,05	2,50E+03	0,50	7,50E+04
$\Xi \rightarrow \Sigma \gamma$	6,00E+01	0,03	1,50E+03	0,30	4,50E+04
Ξ bar–> Λ bar π 0	1,20E+03	0,60	3,00E+04	6,00	9,00E+05

KTeV - Expeted Results from 1997 Data

- Measurement of Branching Ratio for Ξ->Λγ (~1000 evts)
 Measurement of Branching Ratio for Ξ-Σ⁰γ (~5000 evts)
 Measurement of Asymmetry for Ξ->Σ⁰γ(~5000 evts)
 - Measurement of Decay mode $\Lambda \rightarrow p \pi^- \gamma$
 - Σ^0 physics from $\Xi -> \Sigma^0 \gamma$

KTeV - BR(

Same final state as the decay mode $\Xi \rightarrow \Lambda \pi^0$ (99.95 %)

can be distinguished by $\Lambda\gamma$ and $\gamma\gamma$ mass

use $\Xi \rightarrow \Lambda \pi^0$ for normalization

Preliminary:

BR(
$$\Xi \rightarrow \Sigma^0 \gamma$$
) = (3.0 ± 0.05 ± 0.2) * 10⁻³

KTeV -
$$\Xi$$
 ->

3 stages of decay have to be taken into account

2 dimensional cosine distribution of the data has been compared to 10 sets of MC data ranging from $\alpha = 0$ to $\alpha = -1$

The X²/DOF comarison for each of this cases is shown in the right figure

Preliminary Result: $\alpha_{\gamma} = -0.65 \pm 0.13$

Σ^0 – Physics at KTeV

KTeV - Signal for $\Sigma \rightarrow \Lambda e^+e^-$

Summary

KTeV has very nice preliminary results for BR($\Xi^0 \rightarrow \Lambda \gamma$) / BR($\Xi^0 \rightarrow \Lambda \pi^0$) = (0.94 ± 0.04) x 10⁻³ BR($\Xi^0 \rightarrow \Sigma^0 \gamma$) = (3.0 ± 0.05 ± 0.2) x 10⁻³ $\alpha_{\gamma}(\Xi^0 \rightarrow \Sigma^0 \gamma)$ = -0.65 ± 0.13

NA48 has results for BR($\Xi^0 \rightarrow \Lambda \gamma$) = (1.90 ± 0.34 ± 0.19) x 10⁻³ (31 events) BR($\Xi^0 \rightarrow \Sigma^0 \gamma$) = (3.14 ± 0.76 ± 0.32) x 10⁻³ (17 events)

from 1997 Data with low statistics and promising event numbers from High Intensity K_S Test

Outlook

- KTeV: 1999 data to be analysed
- Result for Asymmetry for $\Xi \rightarrow \Lambda \gamma$ from 99 data
- NA48: extended K_s run (20 30 days) next year under optimised conditions
- Decay $\Omega^- \rightarrow \Xi^- \gamma$ still missing
- Better result for $\Xi^- \rightarrow \Sigma^- \gamma$?